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Abstract. In this note, we study the tight gates of some regular partitions in Coxeter groups. In particular,
we study the tight gates of the cone type partition of a Coxeter group W ; a partition giving rise to the minimal
automaton recognising the language of reduced words of W recently studied by Parkinson and Yau ([PY22])
and Przytycki and Yau ([PY24]). We show that tight gates are the join-irreducible elements of the m-low
Garside shadows for m ∈ N and the smallest Garside shadow of W under the right weak order. In the case of
the tight gates of the cone type partition, we show that they also act as a gate of the witnesses of boundary
roots of cone types. As an application of these results, we give a very efficient method of determining whether
two elements have the same cone type without computing the minimal automaton. We also apply our results
to explicitly describe the set of ultra-low elements in some select classes of Coxeter groups, thereby verifying
a conjecture of Parkinson and Yau for these groups. Furthermore, we explicitly describe the tight gates of
the cone type partition in these cases.
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1. Introduction

Since Brink and Howlett showed in [BH93] how to explicitly construct an automaton recognising the
language of reduced words in Coxeter groups, a number of other constructions of automata have recently
been studied ([HNW16], [PY22], [OP22]). The study of these automatic structures has led to many rich
results illuminating the combinatorial and geometric structure of Coxeter groups, including the resolution of
the long standing question of biautomaticity of Coxeter groups (see [OP22]).

A key component of Brink and Howlett’s construction was the notion of elementary roots E and elementary
inversion sets E (W ). They showed that in every finitely generated Coxeter group W , the set E is finite and
thus the partition of W into elementary inversion sets is finite. The partition of W into the sets of E (W )
generalises the well known Shi-arrangement to all Coxeter groups.

Another construction of automata recognising reduced words of W was introduced by Hohlweg, Nadeau
and Williams ([HNW16]) using the notion of Garside shadows; finite subsets of W closed under join and
suffix which were shown to exist in every Coxeter group by Dehornoy, Dyer and Hohlweg in [DDH15]. In
particular, an important class of Garside shadows, the low elements L (and more generally m-low elements
Lm for m ∈ N, see [Dye22]) have recently been extensively studied and have been shown to be in some sense
the canonical representatives of elementary inversion sets E (W ) (resp. m-elementary inversion sets Em(W ))
(see [Hoh16], [CLH22] and [DFHM24]).

Hohlweg, Nadeau and Williams work in [HNW16] not only gave a new method of constructing automata
but established some important conjectures as well. In particular, they conjectured that the automaton
constructed from the smallest Garside shadow S̃ is the minimal automaton (in terms of number of states)
recognising the language of reduced words of W [HNW16, Conjecture 2].

Motivated by this conjecture, in [PY22] we studied the minimal automaton via the study of the set of
cone types T of W . In [PY22], we introduced the notion of a regular partition R; a class of partitions which
characterises the (reduced) automata recognising the language of reduced words of W . Furthermore, we
showed that each part Q of the regular partition corresponding to the cone type automaton, T (called the
cone type arrangement or cone type partition) contains a unique minimal length element g (called the gate
of Q) which is a prefix of all elements in Q. The set of these minimal length cone type representatives Γ,
called the gates of the cone type arrangement were conjectured to be the smallest Garside shadow [PY22,
Conjecture 1]. In addition, we conjectured that there is a characterisation of the elements of Γ in terms of
their inversion set and their cone type [PY22, Conjecture 2]. This motivated the introduction of a new set
of elements analogous to the low-elements called the ultra-low elements U . Then [PY22, Conjecture 2] is
equivalent to the sets Γ and U being equal.

In [PY24], we verified that the set Γ in closed under join (see [PY24, Theorem 1.4]) and it was shown
that Γ is closed under suffix in [PY22]; thus Γ is the smallest Garside shadow, verifying [PY22, Conjecture
1]. However, whether the set Γ = U remains a seemingly challenging open question and hence motivates
much of our work here. Indeed, one of the contributions of the work in this note is resolving this conjecture
for rank 3 irreducible Coxeter groups (as well as right-angled Coxeter groups and those whose Coxeter graph
ΓW is a complete graph), potentially simplifying the argument for a general resolution of the conjecture by
reducing it to this case.

Further motivation for our study of cone types is inspired by Osada and Przytycki’s recent breakthrough
work in [OP22] showing that all Coxeter groups are biautomatic, finally confirming a long held conjecture.
Remarkably, the sets E (W ) play a role in this biautomatic structure as well and hence a natural interesting
question is whether cone types can also be used to construct a biautomatic structure.

In this article, we study important subsets of the Garside shadows Γ and (to a lesser extent) Lm, which
we call the tight gates of the cone type arrangement T and m-Shi arrangements Sm respectively. We denote
these elements by Γ0 and L0

m respectively. We first fix some terminology and notation before outlining our
main results below.

Let (W,S) be a Coxeter system with Φ the associated root system. For w ∈ W denote Φ(w) to be the
inversion set of w. The right weak order on W is defined by x ⪯ y if and only if ℓ(y) = ℓ(x) + ℓ(x−1y),
equivalently, this means x is a prefix of y. Similarly, an element x ∈ W is a suffix of y if ℓ(y) = ℓ(yx−1)+ℓ(x).
In terms of reduced words, x is a prefix of y if there is a reduced word for y which begins with a reduced
word for x. Dually, x is a suffix of y if there is a reduced word for y which ends with a reduced word for x.
For w ∈ W we denote

T (w) = {v ∈ W | ℓ(wv) = ℓ(w) + ℓ(v)}
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to be the cone type of w. The set of cone types of W is T = {T (w) | w ∈ W}. For T ∈ T the projection of
the cone type T (also called the cone type part) is the set

Q(T ) = {x ∈ W | T (x−1) = T}
The set of boundary roots of T is

∂T = {β ∈ Φ+ | ∃ y ∈ W with Φ(w) ∩ Φ(y) = {β} for some w ∈ Q(T )}
The boundary roots ∂T is the most precise set of roots which determines the cone type T [PY22, Theorem
2.8]. We say a root β ∈ Φ+ is super-elementary if there exists x, y ∈ W with Φ(x) ∩ Φ(y) = {β} and denote
the set of super-elementary roots by S. In the course of studying the set Γ0, we also examine elements which
are witnesses of boundary roots of cone types.

Definition 1.1. Let x ∈ W . An element y ∈ W is a witness of β with respect to x if

Φ(x) ∩ Φ(y) = {β}
We denote ∂T (x−1)β to be the set of witnesses of β with respect to x. More precisely,

∂T (x−1)β = {y ∈ W | Φ(x) ∩ Φ(y) = {β}}

Remark 1.1. For each cone type T and x, y ∈ Q(T ) it is not generally true that ∂T (x−1)β = ∂T (y−1)β as
illustrated in the following figure for a cone type in the Coxeter group of type G̃2.

Figure 1. Let x and y be the elements represented by the blue and red dots respectively.
The cone type T := T (x−1) = T (y−1) is represented by the gray shaded region. Let β ∈ ∂T
correspond to the blue hyperplane. The black hyperplanes correspond to the remaining
boundary roots of T . The region bounded by the dotted lines is Q(T ). The region bounded
by the red highlighted lines is ∂T (y−1)β and the region bounded by the blue highlighted
lines is ∂T (x−1)β .

Definition 1.2. Let T ∈ T be a cone type and β ∈ ∂T . The witnesses of β with respect to T is

∂Tβ = {y ∈ W | Φ(x) ∩ Φ(y) = {β} for all x ∈ Q(T )}

For a subset X ⊆ W , we say X is gated if there is a unique minimal length element x ∈ X such that x ⪯ y
for all y ∈ X. We say the subset X is convex if for all x, y ∈ X and all reduced expressions x−1y = s1 · · · sn,
the elements xs1 · · · sj with 0 ≤ j ≤ n is in X. In terms of the Cayley graph X1 of W this means that all
elements on geodesics between x and y are in X.

A main result in this article is the following (a consequence of Lemma 4.2 and Theorem 4.1).

Theorem 1. For x ∈ W and β ∈ ∂T (x−1) there exists a unique minimal length element y ∈ W such that

Φ(x) ∩ Φ(y) = {β}
Furthermore, y ∈ Γ0 and the set ∂T (x−1)β is a convex, gated set in W .
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In [PY22] we showed that for each boundary root β ∈ ∂T and x ∈ W with T (x−1) = T there is a witness
y ∈ W such that y ∈ Γ and Φ0(y) = {β}, where Φ0(y) = {−y(αs) | s ∈ DL(y)} is the set of final roots of y
(see [PY22, Proposition 4.36]). However, it was not known whether such an element y is unique, let alone
that it is the minimal length representative of ∂T (x−1)β (and in fact it is the minimal length representative
of ∂Tβ as well). As a consequence of Theorem 1 we obtain the following, which by the uniqueness of the
element y, is a stronger statement than [PY22, Theorem 2.6].

Corollary 1. For each T ∈ T there is a unique minimal length element y ∈ Γ0 such that

Φ(x) ∩ Φ(y) = {β}
for all x ∈ Q(T ). Hence, y is the gate of the sets ∂T (x−1)β for all x ∈ Q(T ) and the set ∂Tβ.

Theorem 1 reveals that each cone type T is associated with a number of convex, gated subsets of W ,
including its cone type part Q(T ) ∈ T and the sets ∂T (x−1)β for each x ∈ Q(T ) and β ∈ ∂T (as well as the
cone type T itself with the identity as the gate).

We illustrate in Figure 2 an example in the case of the Coxeter group of type G̃2. The figure shows a cone
type T , it’s cone type part Q(T ) and the sets ∂T (x−1)β for each β ∈ ∂T for the minimal element x of Q(T ).

Figure 2. Let the element x be represented by the alcove with the black dot. The grey
shaded region is the cone type T := T (x−1) (the darker alcove represents the identity). The
elements w in the yellow shaded region are the elements such that T (w−1) = T (i.e. the
cone type part Q(T ) of T corresponding to T ). The remaining coloured shaded regions are
the sets ∂T (x−1)β for each β ∈ ∂T and the corresponding coloured dots are the gates of
those regions.

Let us now describe precisely what we mean by tight gates. For a partition P of W we say P is gated if
each part P of P is gated. We say P is convex if each part P is convex. If a partition P is gated with set
of gates X we define

X0 = {x ∈ X | |Φ0(x)| = 1}
to be the set of tight gates of P (or X). It follows by [PY22] and [DFHM24] that the cone type partition T
and the m-Shi partitions Sm are convex, gated (and regular) partitions with gates Γ and Lm respectively
(see Section 2.1.4 for more about Garside shadows and Garside partitions).

As an application of Theorem 1 we obtain a correspondence between the tight gates Γ0 and the set of
super-elementary roots S for a few classes of Coxeter groups, giving a precise size and description of Γ0

in these cases. Other main results in this work shows that the sets L0
m for m ∈ N and Γ0 are the most

fundamental elements of Lm and Γ in the following sense (see Theorem 3.2 and Theorem 3.3).

Theorem 2. Let Lm be the gates of the m-Shi partition Sm. Then

L0
m = {g ∈ Lm | |Φ0(g)| = 1}

is the set of join-irreducible elements of the partially ordered set (Lm,⪯).
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Theorem 3. Let Γ be the gates of the cone type partition T . Then

Γ0 = {g ∈ Γ | |Φ0(g)| = 1}

is the set of join-irreducible elements of the partially ordered set (Γ,⪯).

We note here that we believe these results hold more generally in the case of convex Garside shadows,
where convex here means that each part of the partition induced by the Garside shadow is convex. We aim
to study this in future work.

Conjecture 1. Let G be a convex Garside shadow. Then

G0 = {g ∈ G | |Φ0(g)| = 1}

is the set of join-irreducible elements of the partially ordered set (G,⪯).

A consequence of Theorem 3 is that the set of tight gates Γ0 completely determines the cone type arrange-
ment (see Corollary 3.1). In addition, we obtain the following (see Corollary 4.5).

Corollary 2. Let G be a Garside shadow. The set

G0 = {g ∈ G | |Φ0(g)| = 1}

is closed under suffix.

Corollary 2 then leads to a very efficient algorithm to compute the set Γ0 and S without having to compute
the entire set Γ first (and similarly for the sets L0

m). A consequence of this result is that to determine whether
two elements x, y have the same cone type, one is only required to compute a set strictly smaller than Γ
(with only a few exceptions). Our computations using Sagemath ([Dev24]) show that this set is in many
cases much smaller than Γ as the rank of W grows (see Algorithm 5.1 and Figure 5).

In Section 6 we introduce the notion of set dominance of roots, generalising the concept of dominance
for positive roots. The main utility of the concept at this stage is to give an alternative characterisation of
boundary roots and will be explored further in subsequent work. We record the idea here for future reference.
In Section 7 we prove [PY22, Conjecture 2] for a few select classes of Coxeter groups (see Theorem 7.1 and
Section 7.2).

Theorem 4. Let W be a Coxeter group of one of the following types
(i) W is finite dihedral,
(ii) W is irreducible rank 3,
(iii) W is right-angled, or;
(iv) The Coxeter graph ΓW is a complete graph.

Then U = Γ = S̃.

The following is then a consequence of Corollary 8.1 and Corollary 8.2.

Theorem 5. Let (W,S) be a Coxeter group of one of the following types
(i) W is finite dihedral,
(ii) W is irreducible rank 3,
(iii) W is right-angled, or;
(iv) The Coxeter graph ΓW is a complete graph.
Then for each non-simple super-elementary root β there is a unique pair of tight gates x, y such that

Φ(x) ∩ Φ(y) = {β}

and Φ0(x) = Φ0(y) = {β}. Furthermore,
|Γ0| = 2|E | − |S|
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2. Preliminaries

We recall the necessary facts on Coxeter systems, Cayley graphs, root systems, Garside shadows, cone
types, gates and ultra-low elements. For general Coxeter group theory the primary references are [Hum90],
[BB05] and [Ron]. For background on Garside shadows our primary references are [Hoh16], [HL16], and for
cone types and ultra-low elements see [PY22].

2.1. Coxeter Groups. Let (W,S) be a Coxeter system with |S| < ∞. The length of w ∈ W is

ℓ(w) = min{n ≥ 0 | w = s1 . . . sn with s1, . . . , sn ∈ S},
and an expression w = s1 . . . sn with n = ℓ(w) is called a reduced expression or reduced word for w. The left
descent set of w is DL(w) = {s ∈ S | ℓ(sw) = ℓ(w)− 1}, similarly the right descent set is DR(w) = {s ∈ S |
ℓ(ws) = ℓ(w)− 1}. It is well known that the set

R = {wsw−1 | w ∈ W, s ∈ S}
is the set of reflections of W (see [BB05, Chapter 1]). For J ⊆ S, we denote WJ ≤ W to be the standard
parabolic subgroup of W . For each w ∈ W there is a unique reduced decomposition w = wJ · wJ where
wJ ∈ WJ and wJ ∈ W J , with W J = {v ∈ W | DL(v) ∩ J = ∅}.

2.1.1. Root System of W . Let V be an R-vector space with basis {αs | s ∈ S}. Define a symmetric bilinear
form on V by linearly extending ⟨αs, αt⟩ = − cos(π/m(s, t)). The Coxeter group W acts on V by the rule
sv = v − 2⟨v, αs⟩αs for s ∈ S and v ∈ V , and the root system of W is Φ = {wαs | w ∈ W, s ∈ S}. The
elements of Φ are called roots, and the simple roots are ∆ = {αs | s ∈ S}.

Each root α ∈ Φ can be written as α =
∑

s∈S csαs with either cs ≥ 0 for all s ∈ S, or cs ≤ 0 for all s ∈ S.
In the first case α is called positive (written α > 0), and in the second case α is called negative (written
α < 0). For β ∈ Φ we denote the coefficient of the simple root αs by Coeffαs

(β). The support of α is the
set J(α) = {s ∈ S | cs ̸= 0}. We denote the subgraph of the Coxeter graph ΓW corresponding to J(α) by
Γ(α). We say a root α has non-spherical support if J(α) generates an infinite Coxeter group. Denote Φ+

(resp. Φ−) to be the positive roots (resp. negative roots) of Φ. By definition of Φ, each root β can be written
β = wαs for some s ∈ S. Then the reflection sβ = wsw−1 separates W into two sets (called half spaces)

H−
β = {w ∈ W | ℓ(sβw) < ℓ(w)} and H+

β = {w ∈ W | ℓ(sβw) > ℓ(w)}
Half spaces provide an important characterisation of convexity in W .

Lemma 2.1. [AB08, Proposition 3.94] A subset A ⊆ W is convex if and only if it is an intersection of half
spaces.

For A ⊂ Φ+, cone(A) is the set of non-negative linear combinations of roots in A and coneΦ(A) =
cone(A) ∩ Φ+. The (left) inversion set of w ∈ W is

Φ(w) = {α ∈ Φ+ | w−1(α) < 0}.
An important subset of an inversion set Φ(w) is the base Φ1(w). These roots are used to define low

elements and ultra-low elements (see Section 2.1.2 and Section 2.1.3).

Definition 2.2. [Hoh16, Proposition 4.6] Let w ∈ W . The base of the inversion set Φ(w) is

Φ1(w) = {β ∈ Φ(w) | ℓ(sβw) = ℓ(w)− 1}

The set Φ1(w) determines the inversion set Φ(w) in the following way (see [Dye19, Lemma 1.7] and [HL16,
Corollary 2.13]).

Proposition 2.3. For w ∈ W we have Φ(w) = coneΦ(Φ
1(w)) and if A ⊂ Φ+ is such that Φ(w) = coneΦ(A)

then Φ1(w) ⊆ A.

The following result will be used to compute Φ1(sw) from Φ1(w) whenever ℓ(sw) > ℓ(w).

Proposition 2.4. [Hoh16, Theorem 4.10(2)] Let s ∈ S and w ∈ W . If ℓ(sw) > ℓ(w) then

Φ1(sw) = {αs} ⊔ s
(
{β ∈ Φ1(w) | sβw < ssβw}

)
Another important subset of Φ(w) is the following.

Definition 2.5. Let w ∈ W . The set of final roots of w is

Φ0(w) = {−wαs | s ∈ DR(w)}
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A root β ∈ Φ0(w) if and only if sβw = ws for some s ∈ DR(w). In terms of the Cayley graph X1 the final
roots correspond to the set of final or last walls crossed for geodesics from the identity e to w.

We collect some further useful facts regarding joins in the right weak order.

Proposition 2.6. [Hoh16, Proposition 2.8] If X ⊂ W is bounded (in the right weak order), then

Φ(
∨

X) = coneΦ(
⋃
x∈X

Φ(x))

Corollary 2.1. [Hoh16, Corollary 4.7 (2)] If x ∨ y exists and ℓ(sβ(x ∨ y)) = ℓ(x ∨ y) − 1, then either
ℓ(sβx) = ℓ(x)− 1 or ℓ(sβy) = ℓ(y)− 1.

2.1.2. m-elementary roots, m-low elements and the m-Shi partition. We recall the notion of dominance of
positive roots. A root β ∈ Φ+ dominates α ∈ Φ+ if whenever w−1β < 0 we have w−1α < 0. The set of
m-elementary roots Em is the set of positive roots which dominate m roots (other than itself). For w ∈ W ,
the m-elementary inversion set of w is the set Em(w) = Φ(w)∩ Em. An element w ∈ W is an m-low element
if Φ1(w) ⊂ Em or equivalently Φ(w) = coneΦ(Em(w)). The set of m-low elements is denoted Lm (See [Dye22]
for more details).

We note that for the case m = 0, the mention of m and the subscript is often omitted. The following
result of Brink provides very useful information about the elementary roots in terms of their support.

Lemma 2.7. [Bri98, Lemma 4.1] Suppose that α ∈ Φ+ and Γ(α) contains a curcuit or an infinite bond.
Then α /∈ E .

For all m ∈ N, Fu ([Fu11]) showed that Em is finite and thus there are only finitely many sets Em(w) for
any Coxeter group W . The sets Em(w) thus partition W into finitely many parts. We call the partition of
W with parts Em(w) the m-Shi partition (or m-Shi arrangement), denoted Sm.

A recent result of Dyer, Fishel, Hohlweg and Marks shows that the set Lm is the set of unique minimal
length representatives for each part of the m-Shi partition (see [DFHM24, Theorem 1.1]). In the language
of [PY22], the m-Shi partition is a gated, convex partition with gates Lm (in fact, these partitions are also
regular, which is further discussed in Section 2.1.6). Furthermore, Dyer and Hohlweg previously showed that
L is a Garside shadow ([Hoh16]), which was then extended to all m ∈ N by Dyer ([Dye22]). These results for
the m = 0 case were also independently proven in [PY24]. The tight gates of Sm are

L0
m = {x ∈ Lm | |Φ0(x)| = 1}

2.1.3. Super-elementary roots and ultra-low elements.

Definition 2.8. A root β ∈ Φ+ is super-elementary if there exists x, y ∈ W with

Φ(x) ∩ Φ(y) = {β}

We let S denote the set of super-elementary roots. By the following result we have that S ⊆ E and hence
the set S is finite for every Coxeter group. For a number of classes of Coxeter groups, including those of
affine type, we have S = E (see [PY22, Section 7]).

Lemma 2.9. [PY22, Lemma 2.4] Let x, y ∈ W and β ∈ Φ+. Suppose that Φ(x) ∩ Φ(y) = {β}. Then:
(1) β ∈ E , and;
(2) β ∈ Φ1(x) ∩ Φ1(y)

Definition 2.10. An element w ∈ W is ultra-low if for each β ∈ Φ1(x) there exists y ∈ W with

Φ(x) ∩ Φ(y) = {β}

We denote the set of all ultra-low elements by U .

2.1.4. Garside shadows and Garside partitions. We briefly recall the basics of Garside shadows (for further
details see [HNW16]). A subset B ⊆ W is a Garside shadow if B contains S and

(1) B is closed under join in the (right) weak order: if X ⊆ B is bounded then
∨

X ∈ B.
(2) B is closed under taking suffixes. If w ∈ B then any suffix of w is in B.

An intersection of Garside shadows in (W,S) is a Garside shadow and for any X ⊆ W there is a smallest
Garside shadow GarS(X) containing X ([Hoh16, Proposition 2.2]). For every Coxeter system (W,S) with
S finite, the smallest Garside shadow S̃ := GarS(S) in W is finite ([Hoh16, Corollary 1.2]). The smallest
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Garside shadow S̃ was shown to be Γ (see [PY24, Theorem 1.4]). For an element x ∈ W and Garside shadow
G, denote πG(x) to be the longest prefix of x contained in G (this is called the G-projection of x).

The G-projection map induces a partition G of W with parts Pg for g ∈ G where elements x, y ∈ W are
in Pg if and only if πG(x) = πG(y) = g. Since Γ and Lm are Garside shadows, the partition obtained in this
way are the partitions T and Sm respectively (see [PY22]).

2.1.5. Cone Types and Boundary roots of W . The definition of cone types, cone type parts and boundary
roots were introduced in Section 1. We recall some key properties related to these notions that will be useful
for our work here.

The cone type arrangement or cone type partition T is the partition of W into the sets

Q(T ) = {x ∈ W | T (x−1) = T}
for each T ∈ T. The partition T is the minimal regular partition of W as in discussed in some depth
in [PY22]. The parts Q(T ) are in bijection with the cone types. The following theorem is an interesting
characterisation of T and reveals that the parts {Q(T ) | T ∈ T} of T can realised as intersections of the set
of cone types T.
Theorem 2.1. [Yau21, Theorem 3.4.3] For x, y ∈ W define x ∼ y if and only if

x ∈ T if and only if y ∈ T for all T ∈ T
Then the partition of W by the ∼ equivalence classes is T .

Each part Q(T ) contains a unique minimal length representative gT , called the gate of Q(T ) which is a
prefix of all elements in Q(T ).
Theorem 2.2. [PY22, Theorem 1] For each cone type T there is a unique element mT ∈ W of minimal
length such that T (mT ) = T . Moreover, if w ∈ W with T (w) = T then mT is a suffix of w.

By Theorem 2.2 and as illustrated in Figure 3 from the point of view of the cone type partition T , for
x ∈ W , it is in some sense more natural for one to consider the cone type T (x−1). The gates of T is the set

Γ = {m−1
T | T ∈ T}

and the tight gates of T is the set
Γ0 = {g ∈ Γ | |Φ0(g)| = 1}

The following theorem gives a characterisation of a gate x in terms of Φ0(x).
Theorem 2.3. [PY22, Theorem 4.33] Let x ∈ W . Then x ∈ Γ if and only if for each β ∈ Φ0(x) there exists
w ∈ W with Φ(x) ∩ Φ(w) = {β}.
Theorem 2.4. [PY22, Theorem 2.6] Let T be a cone type. If T = T (x−1) then β ∈ ∂T if and only if there
exists w ∈ W with

Φ(x) ∩ Φ(w) = {β}
Moreover, if β ∈ ∂T then there exists w ∈ W , independent of x, such that Φ(x) ∩ Φ(w) = {β} whenever
T = T (x−1).

We list some further relevant results regarding cone types and their boundary roots.
Lemma 2.11. [PY22, Lemma 1.15] If x ⪯ y then T (y−1) ⊆ T (x−1).
Theorem 2.5. [PY22, Corollary 2.9] Let T be a cone type. If T = T (x−1) Then

T =
⋂
Φ(x)

H+
α =

⋂
E (x)

H+
α =

⋂
Φ1(x)

H+
α =

⋂
Φ1(x)∩E (x)

H+
α =

⋂
∂T (x−1)

H+
α

Proposition 2.12. [PY22, Proposition 1.19] If X ⊆ W is bounded with y =
∨
X then T (y−1) =

⋂
x∈X T (x−1).

Proposition 2.13. [Yau21, Proposition 3.2.4] Let T be a cone type.
(i) If β ∈ Φ+ is a boundary root of T then there exists w ∈ W such that Φ(x) ∩ Φ(w) = {β} for all

x ∈ W with T (x−1) = T .
(ii) For x,w ∈ W , if T (x−1) = T and Φ(x) ∩ Φ(w) = {β} then β ∈ ∂T .

The following is then a consequence of Theorem 2.4 above and the definition of the minimal length cone
type representatives, low-elements and ultra-low elements.
Proposition 2.14. [PY22, Proposition 6.2] For each Coxeter group W ,

U ⊆ Γ ⊆ L
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Figure 3. The cone type partition T for the Coxeter group of type G̃2. For each cone
type T , the part Q(T ) contains the elements x such that T (x−1) = T . The shaded in alcove
of each part represents the inverse of the unique minimal length cone type representatives
m−1

T . These are the gates of T .

2.1.6. Automata and Regular Partitions. It will be helpful to briefly mention the connection between parti-
tions of W and automata for recognising the language of reduced words of (W,S).

For our purposes, one may consider an automaton A as a directed graph with edges labelled by elements
of S together with a transition function µ : Y × S → Y where Y are the vertices or states of A . A state Yo

is designated as the initial or start state and if x, y ∈ Y and µ(x, s) = y then there is a directed edge from
x to y labelled s. A word w̃ = s1s2 . . . sn is reduced if and only if there is a path in A with a sequence of
labels s1, s2, . . . , sn starting from the initial state (see [PY22, Section 1.8] for further details).

In [PY22] we characterise (the states of) automata recognising the language of reduced words of (W,S)
in terms of the notion of a regular partition (see [PY22, Theorem 2]). In brief, each automaton arises from
a regular partition and for each regular partition there exists an explicitly defined automaton. Primary
examples of regular partitions are the m-Shi partitions, and the cone type partition T . In addition, by the
results of [HW16] and [PY22], any Garside shadow G gives rise to a regular partition via the G-projection
map as described in Section 2.1.4.

2.1.7. The Cayley graph of (W,S). We conclude our preliminary section with a brief review of the Cayley
graph (which is only required in the proof of Theorem 1).

We denote X1 to be the Cayley graph of W with vertex set X0 = W and edge-set {(w,ws) | w ∈ W, s ∈ S}
where each edge is of length 1. For vertices x, y ∈ X1 a geodesic between x and y is a minimal length path
between x and y in X1. In the setting of X1, for w ∈ W , ℓ(w) is the length of geodesics from the identity e
to w.

It is well known that the left action of W on X0 induces an action of W on X1. For r ∈ R the wall Hr

is the fixed point set of r in X1 and an edge (w,ws) crosses a wall Hr if and only if r = wsw−1. Each wall
Hr separates X1 into two half-spaces. We denote H+

r to be the half space containing the identity and H−
r
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the half space not containing the identity. By the bijective correspondence between roots and reflections, as
subsets of W , we have H−

β = H−
sβ

(and H+
β = H+

sβ
). We will use the terms walls and roots interchangably.

Two distinct walls Hr and Hq intersect if Hr is not contained in a half-space for Hq (this relation is
symmetric), or equivalently, ⟨r, q⟩ is a finite group. We say r, q are sharp-angled if r and q do not commute
and there is w ∈ W such that wrw−1 and wqw−1 are in S. Then there is a component of X1 \ (Hr ∪Hq)
whose intersection with X0 is a geometric fundamental domain for the action of ⟨r, q⟩ on X0.

For J ⊆ R and p ∈ X0 the J(p)-residue is the subgraph of X1 induced by the action of the subgroup
generated by J on p. In particular, note that for w ∈ W if α, β ∈ Φ0(w) then w−1sαw = s and w−1sβw = t
are in S and ⟨sα, sβ⟩ is a finite dihedral reflection subgroup with 2m(s, t) elements. Then the residue
⟨sα, sβ⟩(w) = wW⟨s,t⟩ with wΦ+

⟨s,t⟩ the set of m(s, t) corresponding roots separating the 2m(s, t) elements of
⟨sα, sβ⟩(w).

For the purposes of proving Theorem 1, we consider an order on paths in X1 using the lexicographic order
on tuples with entries in N. For tuples a = (a1, . . . , am) and b = (b1, . . . , an) (without loss of generality
assume m ≤ n) we have a ≤ b if and only if there exists j ≤ m such that ai = bi for all i ≤ j and aj < bj or
ai = bi for all i ≤ m.

For a path π = (p0, . . . , pn) in X1 define the ordered tuple Π = (nL, . . . , n1) where nj is the number of
elements pi with ℓ(pi) = j and L = maxn

i=0ℓ(pi). Then for paths π, π′ we have π ≤ π′ if and only if Π ≤ Π′.

3. The T 0 partition and join-irreducible elements of Lm and Γ

In this section, we initiate the study of some properties of the tight gates Γ0 of T . We show that the
partition induced by the tight gates Γ0 produces the cone type arrangement T . We also show that the
sets L0

m and Γ0 are the join-irreducible elements of the posets Lm and Γ under the right weak order. In
particular, in follows from [PY24, Theorem 1.4] that the set Γ0 are the most fundamental elements of the
smallest Garside shadow of W .

The following result is an obvious, but rather useful fact.

Lemma 3.1. Let x ∈ W . If α ∈ Φ(x) then there is y ⪯ x with Φ0(y) = {α}

Proof. Let x0 be a prefix of x with α ∈ Φ0(x0). If there is β ∈ Φ0(x0) with β ̸= α then consider the prefix
x1 := sβx0 of x. Repeating this process, there must be some prefix xk of x with Φ0(xk) = {α}. □

As noted in the introduction, the following result is known. It is a direct consequence of Lemma 3.1 and
Theorem 2.3.

Proposition 3.2. [PY22, Proposition 4.34] Let x ∈ W and β ∈ Φ+. Suppose there exists w ∈ W such that
Φ(x) ∩ Φ(w) = {β}, and let w be of minimal length subject to this property. Then Φ0(w) = {β} and w is a
gate.

The followng result shows that every gate of T is a join of tight gates.

Theorem 3.1. Let x ∈ Γ. Then
x =

∨
X

where X = {z ∈ W | z ⪯ x with Φ0(z) = {α} and α ∈ ∂T (x−1)}. Hence, every gate is a join of tight gates.

Proof. Let x ∈ Γ. By Lemma 3.1, for each α ∈ ∂T (x−1), there is zα ⪯ x with Φ0(zα) = {α}. Since α ∈
∂T (x−1), there exists wα ∈ Γ0 such that Φ(x)∩Φ(wα) = {α}. Therefore, we also have Φ(zα)∩Φ(wα) = {α}.
By Theorem 2.3 then we have zα ∈ Γ0 and x is an upper bound of

X := {z ∈ W | z ⪯ x with Φ0(z) = {α} and α ∈ ∂T (x−1)} ⊂ Γ0

Now let y =
∨
X and let Φ(X) :=

⋃
z∈X Φ(z). By Proposition 2.12 and Theorem 2.5 we have

T (y−1) =
⋂
z∈X

T (z−1) =
⋂

Φ(X)

H+
β

Since y ⪯ x and ∂T (x−1) ⊆ Φ(X) it follows by Theorem 2.5 again that

T (x−1) ⊆ T (y−1) =
⋂

Φ(X)

H+
β ⊆

⋂
∂T (x−1)

H+
β = T (x−1)

So T (x−1) = T (y−1) and since x ∈ Γ, by Theorem 2.2 we must have y = x. □
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Corollary 3.1. Each cone type T ∈ T is expressible as an intersection of cone types of tight gates.

Proof. By Theorem 3.1 it follows that every gate is a join of a set of tight gates X. Then by Proposition 2.12
we have that T (x−1) =

⋂
z∈X T (z−1). □

Corollary 3.2. Define x ∼ y if the following holds: x ∈ T (w−1) if and only if y ∈ T (w−1) for all w ∈ Γ0.
Let T 0 be the partition of W with parts P defined by the relation x ∼ y. Then T 0 = T and hence T 0 is

a regular partition.

Proof. By Theorem 2.1 it suffices to show that if x, y are in the same part of T 0 then x, y are in the same
part of T . Suppose x ∈ T (z−1) if and only if y ∈ T (z−1) for all z ∈ T 0. Let x ∈ T (g−1) for g ∈ Γ \ Γ0. By
Theorem 3.1 and Proposition 2.12 we then have x ∈ T (w−1) for all w ∈ X where

X = {w ∈ W | w ⪯ g with Φ0(w) = {α} and α ∈ ∂T (g−1)}
Since X ⊂ Γ0 this implies y ∈ T (w−1) for all w ∈ X and hence by Theorem 3.1 and Proposition 2.12 again
this implies y ∈ T (g−1). Similarly, if x /∈ T (g−1) for some g ∈ Γ \ Γ0 then by Theorem 3.1, there must
be some w ⪯ g with Φ0(w) = {α} and α ∈ ∂T (g−1) ∩ ∂T (w−1) such that x /∈ T (w−1). Therefore, also
y /∈ T (w−1). □

Remark 3.1. A consequence of Corollary 3.2 is that to determine whether two elements x, y have the same
cone type (or equivalently, whether x−1 and y−1 live in the same part of the cone type partition), one only
needs to compute the set of tight gates Γ0 and then check whether x ∈ T (w−1) if and only if y ∈ T (w−1) for
all w ∈ Γ0. Our computations using Sagemath ([Dev24]) in Section 5.1 show that often, the set Γ0 is much
smaller than Γ. We illustrate the T 0 arrangements for the rank 3 Coxeter groups of affine type in Figure 4.

The following result generalises Theorem 3.1, as a consequence, we obtain that every m-low element is a
join of tight gates of Sm.

Proposition 3.3. Let x ∈ W . Then
x =

∨
X

where X = {z ∈ W | z ⪯ x with Φ0(z) = {α} and α ∈ Φ1(x)}.

Proof. Clearly x is an upper bound of X. So by [BB05, Theorem 3.2.1] the join of X exists. Let y =
∨
X.

Then y ⪯ x and by Proposition 2.6

Φ(y) = coneΦ
( ⋃
z∈X

Φ(z)
)
= coneΦ

( ⋃
z∈X

coneΦΦ
1(z)

)
= coneΦ

( ⋃
z∈X

Φ1(z)
)

Now since Φ1(x) ⊆
⋃

z∈X Φ1(z) we have

Φ(x) = coneΦ
(
Φ1(x)

)
⊆ coneΦ

( ⋃
z∈X

Φ1(z)
)
= Φ(y)

Therefore x ⪯ y. □

Corollary 3.3. Every x ∈ Lm is a join of tight gates of Sm.

Proof. By definition, if x ∈ Lm then Φ1(x) ⊆ Em. Hence, for each z ∈ X as defined in Proposition 3.3 we
have Φ0(z) ⊆ Em. Thus it follows by [DFHM24, Theorem 4.8] that X ⊆ L0

m. □

Recall that for a poset P an element x ∈ P is join-irreducible if x is not the minimal element in P and if
x = a ∨ b then either x = a or x = b. Equivalently, if X ⊆ P and x =

∨
X then x ∈ X.

Theorem 3.2. The set
L0
m = {x ∈ Lm | |Φ0(x)| = 1}

is the set of join-irreducible elements of (Lm,⪯).

Proof. Let x ∈ Lm with Φ0(x) = {β}. If x is not join-irreducible, then x =
∨
A for some A ⊆ Lm with

x /∈ A. Since β ∈ Φ1(x) by Corollary 2.1 β ∈ Φ1(y) for some y ∈ A and y ≺ x. Therefore, there must be
α ̸= β ∈ Φ0(x), a contradiction.

Now suppose x is join-irreducible in Lm and |Φ0(x)| > 1. Let {α1, . . . , αk} = Φ0(x) and xi := sαi
x and

let yi := π(xi) ⪯ xi be the Lm projection of xi (i.e. yi is the minimal element of the part containing xi in
the m-Shi partition). We claim that x =

∨
yi. Note that since yi ∈ Lm we have

Φ(yi) = coneΦ(Em(yi))
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Since each αi ∈ Em we have
Em(xi) = Em(yi) = Em(x) \ {αi}

and Em(x) =
⋃

Em(yi). Then since x ∈ Lm we have

Φ(x) = coneΦ(Em(x)) = coneΦ
(⋃

Em(yi)
)

Now let y =
∨

yi. Then by Proposition 2.6

Φ(y) = coneΦ
(⋃

Φ(yi)
)

= coneΦ
(⋃

coneΦ(Em(yi))
)

= coneΦ
(⋃

Em(yi)
)

= Φ(x)

where the equality of the second and third lines above follows from [Hoh16, Proposition 2.8 (4)]. Hence
x = y. □

A similar argument to Theorem 3.2 follows for the set of tight gates Γ0.

Theorem 3.3. The set
Γ0 = {x ∈ Γ | |Φ0(x)| = 1}

is the set of join-irreducible elements of (Γ,⪯).

Proof. When x ∈ Γ0 and Φ0(x) = {β} the argument is exactly the same as the first part of Theorem 3.2.
Now let x ∈ Γ be join-irreducible in (Γ,⪯) and suppose |Φ0(x)| > 1. Let {α1, . . . αk} = Φ0(x) and

xi := sαi
x. Again let π(xi) ∈ Γ be the Γ-projection of xi (i.e. π(xi) is the minimal element of the part

containing xi in the cone type partition T ). We claim that x =
∨

π(xi). Let y =
∨
π(xi). Note that since

x is an upper bound for each π(xi), this implies y ⪯ x. Then since x =
∨

xi and T (x−1
i ) = T (π(xi)

−1) for
each i, by Proposition 2.12 we have

T (x−1) =
⋂
xi

T (x−1
i ) =

⋂
xi

T (π(xi)
−1) = T (y−1)

Since x ∈ Γ we must have x = y. □

4. Witnesses of boundary roots

In this section, we study the witnesses of boundary roots of cone types. We show that for each element
x ∈ W and each β ∈ ∂T (x−1) the set of witnesses of β with respect to x is a convex, gated subset of W .
Furthermore, for each cone type T ∈ T, there is a unique minimal length tight gate y in ∂T (x−1)β for all
x ∈ Q(T ). In addition, we show that for any Garside shadow G, the set G0 is closed under suffix. In this
section, for w ∈ W let π(w) be the Γ-projection of w.

We begin with some basic results.

Lemma 4.1. Let w ∈ W and β ∈ ∂T (w−1). Then w is it’s own witness of β if and only if w ∈ S.

Proof. If w is it’s own witness of β, then Φ(w) ∩ Φ(w) = {β}. Clearly, this can only be true if w ∈ S. □

Lemma 4.2. Let x ∈ W and T := T (x−1). Then

∂T (x−1)β = H−
β ∩

( ⋂
α∈Φ(x)\{β}

H+
α

)
and the set ∂T (x−1)β is convex.

Proof. The proof is straightforward. If w ∈ ∂T (x−1)β then α /∈ Φ(w) for all α ̸= β ∈ Φ(x), so w ∈ H+
α for

all α ∈ Φ(x) \ {β}. Since β ∈ Φ(w) we have w ∈ H−
β . The reverse inclusion is also clear. Convexity follows

by Lemma 2.1 since ∂T (x−1)β is an intersection of half spaces. □
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Figure 4. The partition T 0 = T for the rank 3 Coxeter groups of affine type. The green
alcoves represent the tight gates and the cyan alcoves are the gates which are non-trivial
joins of tight gates.

Lemma 4.3. Let T ∈ T, β ∈ ∂T and x ∈ Q(T ). If w ∈ ∂T (x−1)β then v ∈ ∂T (x−1)β for all π(w) ⪯ v ⪯ w.

Proof. Let w ∈ ∂T (x−1)β . So Φ(x) ∩ Φ(w) = {β} and hence β ∈ ∂T (w−1). Since π(w) ⪯ v ⪯ w and
β ∈ Φ(π(w)) we have Φ(x) ∩ Φ(v) = {β} for all π(w) ⪯ v ⪯ w, so v ∈ ∂T (x−1)β . □
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The next result shows that the set of witnesses have a similar property to cone types in terms of prefix
relation (see Lemma 2.11).

Lemma 4.4. Let T ∈ T and x, y ∈ Q(T ). If β ∈ ∂T and x ⪯ y then ∂T (y−1)β ⊆ ∂T (x−1)β.

Proof. If w ∈ ∂T (y−1)β then Φ(y) ∩ Φ(w) = {β} and since x ⪯ y with β ∈ Φ(x) then Φ(x) ∩ Φ(w) = {β}
and so w ∈ ∂T (x−1)β . □

Corollary 4.1. Let T ∈ T and x the minimal element of Q(T ). Then

∂T (x−1)β =
⋃

y∈Q(T )

∂T (y−1)β

Proof. Since x ∈ Q(T ), the inclusion ∂T (x−1)β ⊆
⋃

y∈Q(T ) ∂T (y
−1)β is clear. The reversion inclusion follows

from Lemma 4.4 since x ⪯ y for all y ∈ Q(T ). □

The following two results are not directly required for our proof of Theorem 1. They are included to
demonstrate how the boundary roots and witnesses can be inductively computed.

Lemma 4.5. [Yau21, Lemma 3.3.4] Let w ∈ W and s ∈ S where s /∈ DL(w). Then

∂T (w−1s) = {αs} ⊔ s
(
{α ∈ ∂T (w−1) | ∃ x ∈ ∂T (w−1)α with s ∈ DL(x)}

)
Proof. We first show the left to right inclusion. If α ̸= αs ∈ ∂T (w−1s) then by Proposition 2.13 (i) there is
x ∈ W such that Φ(sw) ∩ Φ(x) = {α}. Thus αs /∈ Φ(x) and hence Φ(sx) = {αs} ⊔ sΦ(x). Since αs ∈ Φ(sw)
we have Φ(w) = s

(
Φ(sw) \ {αs}

)
. Therefore

Φ(w) ∩ Φ(sx) = s
(
Φ(sw) \ {αs}

)
∩
(
{αs} ⊔ sΦ(x)

)
= s

(
Φ(sw) ∩ Φ(x)

)
= s({α})

We now show the right to left inclusion. It is clear that αs ∈ ∂T (w−1s). For a root α ∈ ∂T (w−1) where
there is x ∈ W with Φ(w) ∩Φ(x) = {α} and s ∈ DL(x) we aim to show that Φ(sw) ∩Φ(sx) = {sα}. It then
follows by Proposition 2.13 (ii) that sα is a boundary root of T (w−1s). Since ℓ(sw) > ℓ(w) we have that
Φ(sw) = {αs} ⊔ sΦ(w). If x ∈ W is such that s ∈ DL(x) then Φ(sx) = s

(
Φ(x) \ {αs}

)
. Hence we have

Φ(sw) ∩ Φ(sx) =
(
{αs} ⊔ sΦ(w)

)
∩ s

(
Φ(x) \ {αs}

)
Since Φ(w)∩Φ(x) = {α} by the formula for Φ(sw)∩Φ(sx) above it follows that sα ∈ Φ(sw)∩Φ(sx). We now
show that Φ(sw)∩Φ(sx) = {sα}. If β ∈ Φ(sw)∩Φ(sx) then β ∈ sΦ(w)∩ sΦ(x) = s

(
Φ(w)∩Φ(x)

)
= s({α}).

So β = sα as required. □

The next result shows how the set ∂T (sx−1)sβ is obtained from ∂T (x−1)β if β ∈ ∂T (x−1) and sβ ∈
∂T (sx−1).

Corollary 4.2. Let x ∈ W , s ∈ S with s /∈ DL(x). Let y = sx. If β ∈ ∂T (x−1) and sβ ∈ ∂T (y−1) then

∂T (y−1)sβ = {w ∈ ∂T (x−1)β | s ∈ DL(w)}

Proof. If v ∈ ∂T (y−1)sβ then Φ(y) ∩ Φ(v) = {sβ}. Since αs ∈ Φ(y) this implies that αs /∈ Φ(v) and so
Φ(sv) = {αs} ⊔ sΦ(v). Since Φ(x) = sΦ(y) \ {αs} we have

Φ(x) ∩ Φ(sv) =
(
sΦ(y) \ {αs}

)
∩
(
{αs} ⊔ sΦ(v)

)
Therefore, as in the proof of Lemma 4.5, we have Φ(x)∩Φ(sv) = {β}. The reverse inclusion directly follows
from the second half of the proof of Lemma 4.5. □

We now prove the main result of this section.

Theorem 4.1. For each x ∈ W and β ∈ ∂T (x−1) there exists a unique minimal length element y ∈ W such
that

Φ(x) ∩ Φ(y) = {β}
Furthermore, y ∈ Γ0 and the set of witnesses ∂T (x−1)β is a convex, gated set in W .
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Proof. The proof is very similar to the proof of [PY24, Theorem 1.1] and [PY24, Theorem 1.3]. We pass
between reflections in the Cayley graph X1 of W and their corresponding roots in Φ+. Hence consider
∂T (x−1)β to be the intersection of the half spaces H−

t (t := sβ) and H+
ui

(ui := sαi
) in X1 corresponding to

the roots β and {αi | αi ∈ Φ(x) \ {β}} (per the characterisation of ∂T (x−1)β in Lemma 4.2).
It suffices to show that for each p0, pn ∈ ∂T (x−1)β there is p ∈ ∂T (x−1)β with p0 ⪰ p ⪯ pn. Let

π = (p0, p1, . . . , pn) be a geodesic edge path between p0 and pn. By Lemma 4.2, each pi ∈ ∂T (x−1)β for
0 ≤ i ≤ n.

Our aim is to modify π to obtain another embedded edge path between p0 and pn (not necessarily geodesic)
so that there is no pi−1 ≺ pi ≻ pi+1. Now suppose there is pi−1 ≺ pi ≻ pi+1. Let Hr, Hq be the walls
separating pi−1 from pi and pi from pi+1 respectively and let αr, αq be the corresponding roots. Note that
αr ̸= β and αq ̸= β since by convexity pi−1, pi, pi+1 ∈ ∂T (x−1)β . Also, pi−1, pi+1 are elements of the residue
R = ⟨r, q⟩(pi) and αr, αq ∈ Φ0(pi). If r and q do not commute then r, q are sharp angled and the identity
e is in a geometric fundamental domain for the finite dihedral reflection subgroup W⟨r,q⟩ generated by the
reflections r, q. We claim that all the elements of the residue R = ⟨r, q⟩(pi) lie in ∂T (x−1)β .

Since pi ∈ ∂T (x−1)β this implies that αr, αq /∈ Φ(x) \ {β}. We then need to show that α′ /∈ Φ(x) \ {β}
for any α′ ∈ Φ+

⟨r,q⟩. Hence we can assume that r and q do not commute, otherwise there is no other root in
Φ+

⟨r,q⟩. If there is α′ ∈ Φ+
⟨r,q⟩ ∩ Φ(x) then since α′ = kαr + jαq for some k, j ∈ R>0 this implies that either

αr ∈ Φ(x) ∩Φ(pi) or αq ∈ Φ(x) ∩Φ(pi). Since β ∈ Φ(x) ∩Φ(pi), this then implies that |Φ(x) ∩Φ(pi)| > 1, a
contradiction.

We now modify π and replace the subpath (pi−1, pi, pi+1) with the other embedded edge-path in the residue
R from pi−1 to pi+1. By [Ron, Theorem 2.9] all the elements of R are ⪯ pi, since the element ProjR(e) of R is
opposite to pi. It then follows by [Ron, Theorem 2.15] that all elements of R lie on a geodesic edge path from
ProjR(e) to pi and hence on a geodesic edge path from e to pi through ProjR(e). Thus this path modification
decreases the complexity of π (under lexicographic order); considering π as the tuple Π = (nL, . . . , n2, n1),
where nj is the number of elements pi in π with ℓ(pi) = j and L = maxn

i=0ℓ(pi).
After finitely many such modifications we obtain the desired path. The fact that the minimal element y

is necessarily a tight gate follows by Proposition 3.2 and convexity follows by Lemma 4.2. □

Corollary 4.3. For each T ∈ T and β ∈ ∂T , there is a unique minimal length element y ∈ W such that

Φ(x) ∩ Φ(y) = {β}

for all x ∈ Q(T )

Proof. Let u, v ∈ Q(T ) and β ∈ ∂T . By Theorem 4.1 there are unique minimal length elements u′, v′ such
that Φ(u) ∩ Φ(u′) = {β} and Φ(v) ∩ Φ(v′) = {β}. Let g be the minimal element of Q(T ). Then g ⪯ u and
g ⪯ v and Φ(g) ∩ Φ(u′) = {β} and Φ(g) ∩ Φ(v′) = {β}. If u′ ̸= v′ then applying Theorem 4.1 to g, there
is z ∈ W with z ≺ u′ and z ≺ v′ such that Φ(g) ∩ Φ(z) = {β}. But then also Φ(u) ∩ Φ(z) = {β} and
Φ(v) ∩ Φ(z) = {β} contradicting he minimality of u′ and v′. Hence we must have u′ = v′. □

As a consequence of Theorem 4.1 we also obtain the following properties for ∂Tβ .

Corollary 4.4. For each T ∈ T, the following properties hold:
(i) ∂Tβ ̸= ∅.
(ii) ∂Tβ =

⋂
y∈Q(T ) ∂T (y

−1)β.
(iii) ∂Tβ is convex and gated.

Proof. (i) This directly follows from Corollary 4.3.
(ii) Follows by definition of ∂Tβ .
(iii) This follows by (i) and (ii) and by the fact that each ∂T (y−1)β is convex.

□

The results in this section show that for any cone type T and β ∈ ∂T , there is a unique tight gate y that is a
witness to β for all x′ ∈ Q(T ). By symmetry, there is a unique tight gate x with Φ(y)∩Φ(x) = {β} and hence
there is a natural “pairing" of tight gates with super elementary roots. The following example demonstrates
that there are potentially multiple pairs of minimal-length tight gates x, y with Φ(x) ∩ Φ(y) = {β} and
Φ0(x) = Φ0(y) = {β} for a super-elementary root β.

Example 4.6. Let W be the rank 4 compact hyperbolic Coxeter group whose graph is given by
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s t

uv
4

Let β = αt +
√
2αu + 2αv. Denote the elements a = tvutv, b = uvutv, c = utvutv, d = vutv. Then these

elements are all tight gates with Φ0(a) = Φ0(b) = Φ0(c) = Φ0(d) = {β} and we have

Φ(a) ∩ Φ(b) = {β}
Φ(c) ∩ Φ(d) = {β}

But d is not a witness of β with respect to a and b is not a witness of β with respect to c.

We conclude this section by showing that the tight elements of a Garside shadow G are closed under suffix.
Note that we loosely use the term “tight elements" here rather than tight gates since we are not considering
the partition induced by G.

Lemma 4.7. Let x ∈ W with ℓ(x) > 1 and |Φ0(x)| = 1. If s ∈ DL(x) then Φ0(sx) = {−sxαs | s ∈ DR(x)}
and |Φ0(sx)| = 1.

Proof. By Definition 2.5, it suffices to show that DR(sx) = DR(x). Since |Φ0(x)| = |DR(x)| = 1 there
is a single simple reflection t ∈ DR(x). Since ℓ(x) > 1, any reduced expression for x must be written as
x = s1 . . . skt where k ≥ 1. Hence, if s ∈ DL(x) then any reduced expression for sx must end in t. Thus,
t ∈ DR(sx). The other inclusion is clear. □

Theorem 4.2. Let G be a Garside shadow and

G0 = {x ∈ G | |Φ0(x)| = 1}

Then the set G0 is closed under suffix.

Proof. Let x ∈ G0, then since G is closed under suffix, if s ∈ DL(x) then sx ∈ G and by Lemma 4.7
sx ∈ G0. □

Corollary 4.5. The sets L0
m and Γ0 are closed under suffix.

Proof. This follows immediately from Theorem 4.2. □

The following result also implies that the set of tight gates Γ0 is closed under suffix and gives more precise
information about the relationship between tight gates and super-elementary roots.

Proposition 4.8. Let x ∈ Γ and Φ(x)∩Φ(y) = {β} and Φ0(y) = {β} where y is of minimal length with this
property. If s ∈ DL(y) then

Φ(sx) ∩ Φ(sy) = {sβ}

and sy ∈ Γ0.

Proof. Let x, y ∈ W possess the properties as stated. Since αs ∈ Φ(y) it follows that αs /∈ Φ(x). Denote
v = sx. It then follows that Φ(v) = {αs} ⊔ sΦ(x) and Φ(sy) = sΦ(y) \ {αs}. Therefore Φ(v) ∩Φ(sy) = {sβ}
and it is clear that sβ ∈ Φ0(sy). Now suppose there is α ̸= sβ ∈ Φ0(sy). Then we have sαsy ⪯ sy and
αs /∈ Φ(sαsy) ∩ Φ(sy). Thus ssαsy ⪯ y with ℓ(sαsy) = ℓ(sy) − 1 = ℓ(y) − 2 and sβ ∈ Φ(sαsy). Then
Φ(ssαsy) = {αs} ⊔ Φ(sαsy) and β ∈ Φ(ssαsy). This then implies that

Φ(x) ∩ Φ(ssαsy) = {β}

and ℓ(ssαsy) = ℓ(y)− 1 contradicting the minimality of y. □
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5. Computing the sets S and Γ0

Super elementary roots and tight gates are intimately connected by definition. In this section, we highlight
some results connecting the relationship between the two.

Since S ⊆ E , the set S can be determined in finite time by considering each root β ∈ E and checking
whether there exists a pair of gates or low-elements {x, y} with Φ(x) ∩ Φ(y) = {β}. An application of
Theorem 4.1 and Corollary 4.5 gives an alternative method which concurrently computes the set S and Γ0

without first having to compute the set L or the set Γ. It only requires that the elementary roots E is
computed first (which is quite efficient).

Algorithm 5.1 Compute tight gates and super-elementary roots

1: Let L′ = S, S ′ = ∆, Γ′ = ∅
2: Initialize L′

i = {x ∈ L′ | ℓ(x) = i} with i = 1
3: while L′

i ̸= ∅ do
4: for x ∈ L′

i do
5: for s /∈ DL(x) do
6: Set y = s · x
7: if |Φ0(y)| = 1 and {β} = Φ0(y) ∈ E then
8: Add y to L′

9: if there is z ̸= y ∈ L′ with Φ0(z) = {β} and Φ(z) ∩ Φ(y) = {β} then
10: Add β to S ′

11: Add y, z to Γ′

12: end if
13: end if
14: end for
15: end for
16: Set i = i+ 1
17: end while

The algorithm terminates in finite time and upon termination Γ′ = Γ0 and S ′ = S

Proof. By Corollary 4.5 it follows that the tight gates form saturated chains in the partial order (Γ,⪯). The
set L′ in the algorithm iteratively records the set L0 = {w ∈ L | |Φ0(w)| = 1}. Since Γ0 ⊆ L0 ⊆ L and
|L| < ∞, the algorithm terminates in finite time. Inductively, if x ∈ Γ′, then x ∈ Γ0 and if y = s · x ∈ Γ0

then there is some z ∈ L′ such that Φ(y) ∩ Φ(z) = {β} with Φ0(y) = {β} = Φ0(z). So β ∈ S and by
Theorem 4.1, this element z is unique and is a tight gate (by symmetry, y is also the unique tight gate such
that Φ(z) ∩ Φ(y) = {β}). □

We also note the following consequence of Theorem 4.1 which shows that the number of non-simple tight
gates is always even.

Corollary 5.1. Let |Γ0 \ S| = K. Then K is even, and |S \∆| ≤ K/2.

Proof. Theorem 4.1 shows that tight gates g ∈ Γ0 \ S are naturally paired according to their final roots
Φ0(g) in the following way: For each β ∈ S \ ∆, there is some x ∈ Γ0 with β ∈ ∂T (x−1) ∩ Φ0(x). Hence
by Theorem 4.1 there is a unique element y ∈ Γ0 \ S such that Φ(x) ∩ Φ(y) = {β} and Φ0(y) = {β}. By
symmetry, x is also the unique element of Γ0 with Φ(x) ∩ Φ(y) = {β}. □

5.1. Data for select Coxeter groups. We utilise Algorithm 5.1 to compute the size of S and Γ0 for some
Coxeter systems in low rank. We note that as the size of Γ increases, in general, the ratio |Γ0|/|Γ| tends to
decrease, making the computation of Γ0 generally much more efficient to determine whether two elements
have the same cone type.
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W |E| |S| |L| |L0| |Γ| |Γ0|
Ã2 6 6 16 9 16 9
B̃2 8 8 25 14 24 13
G̃2 12 12 49 26 41 21
Ã3 12 12 125 28 125 28
B̃3 18 18 343 66 315 58
C̃3 18 18 343 66 317 58
Ã4 20 20 1296 75 1296 75
B̃4 32 32 6561 270 5789 227
C̃4 32 32 6561 270 5860 227
D̃4 24 24 2401 140 2400 139
F̃4 48 48 28561 1054 22428 715
Ã5 30 30 16807 186 16807 186
B̃5 50 50 161051 1030 137147 836
C̃5 50 50 161051 1030 139457 836
D̃5 40 40 59049 608 58965 596

W |E| |S| |L| |L0| |Γ| |Γ0|
X4(4) 25 25 438 112 392 98
X4(5) 32 32 516 158 462 138
Y4 32 32 687 166 578 150
Z4 30 30 513 142 473 132

X5(3) 114 114 101412 5767 52542 4071
X5(4) 83 83 25708 3128 22886 2871
X5(5) 135 135 42064 6014 37956 5523
Z5 120 120 41385 5476 39138 5391

Figure 5. Data for low rank affine and compact hyperbolic Coxeter groups.

6. Set Dominance

In this section, to further study the set of boundary roots of a cone type, we introduce the notion of a
positive root β dominating a set of positive roots, generalising the notion of dominance of roots from [BH93,
Definition 2.1]. The main result in this section is an alternative characterisation of boundary roots.

Definition 6.1. Let Λ ⊂ Φ+ be non-empty and let β ∈ Φ+. Then β dominates the set Λ if β /∈ Λ and
whenever w−1β < 0 we have w−1α < 0 for some α ∈ Λ.

Remark 6.1. (i) By the above definition, it is clear that if β dominates Λ ⊂ Φ+ then β dominates Λ′ :=
Λ∪{α1, . . . , αk} for any arbitary set of roots {α1, . . . , αk}. We say that β properly dominates Λ ⊆ Φ+ if
there is no α ∈ Λ which is redundant, i.e. for each α ∈ Λ there exists some w ∈ W such that w−1β < 0
and w−1α < 0.

(ii) If β dominates Λ ⊆ Φ+ then β properly dominates some subset Λ′ ⊆ Λ.
(iii) We say that β tightly dominates Λ if β does not dominate any subset Λ′ ⊂ Λ.
(iv) If β dominates Λ and |Λ| = 1 then the notion of set dominance is the same as dominance in the sense

of [BH93, Definition 2.1].

We collect some further basic properties of set dominance.

Lemma 6.2. Let Λ ⊆ Φ+

(i) If β ∈ ConeΦ+(Λ) and β /∈ Λ then β dominates Λ.
(ii) For w ∈ W and β ∈ Φ(w) \ Φ1(w), β dominates Φ1(w).
(iii) If β ∈ E and β dominates Λ, then |Λ| > 1.
(iv) β dominates Λ if and only if H−

β ∩
(
∩Λ H+

α

)
= ∅

Proof. (i) If β ∈ ConeΦ+(Λ) then we can write β =
∑

cαα for α ∈ Λ with cα ≥ 0. Hence for any w ∈ W ,
if w−1β < 0 then w−1α < 0 for some α ∈ Λ.

(ii) This follows by (i) since Φ(w) = ConeΦ(Φ
1(w)).

(iii) This is clear since elementary roots dominate no singleton sets of roots.
(iv) Suppose there is w ∈ H−

β ∩
(
∩Λ H+

α

)
then w−1β < 0 and w−1α > 0 for all α ∈ Λ. Conversely, if

H−
β ∩

(
∩Λ H+

α

)
= ∅ then for any w ∈ W with β ∈ Φ(w) we have that w ∈ H−

α for some α ∈ Λ, so
w−1α < 0. Hence β dominates Λ.

□

The following straightforward result gives an alternative characterisation of boundary roots in terms of
the notion of set dominance.
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Lemma 6.3. Let x ∈ W and denote T := T (x−1). Then β ∈ ∂T if and only if β ∈ Φ1(x) and β does not
dominate any non-empty subset Λ ⊆ (Φ1(x) \ {β}).

Proof. Suppose β ∈ ∂T . Then β ∈ Φ1(x) and by Proposition 2.13 there exists w ∈ W with Φ(x)∩Φ(w) = {β}.
Hence w−1β < 0 and w−1α > 0 for all α ∈ Φ1(x) \ {β}. Therefore β does not dominate any non-empty
subset Λ ⊆ (Φ1(x)\{β}). Conversely, since β ∈ Φ1(x) and β does not dominate any subset Λ ⊆ (Φ1(x)\{β})
this implies that there exists w ̸= x ∈ W with β ∈ Φ(w) and w−1α > 0 for all α ∈ Φ1(x) \ {β}. Therefore,
Φ(x) ∩ Φ(w) = {β}. □

7. Ultra-Low Elements

The remainder of this paper is devoted to proving Theorem 4. Theorem 5 is a consequence of the compu-
tations in this section and Section 8.

7.1. Dihedral groups, right-angled and complete graph Coxeter groups. We begin with some basic
observations and useful results regarding inversion sets of finite Coxeter groups and dihedral groups.

Lemma 7.1. Let W be a finite Coxeter group and wo the longest element of W . Then

T (wo) =
⋂
s∈S

H+
s = {e}

and wo ∈ U .

Proof. It is clear that Φ1(wo) = ∆ and since Φ(wo)∩Φ(s) = {αs} for all s ∈ S we have Φ1(wo) = ∂T (wo). □

Lemma 7.2. Let x ∈ W ′ be ultra-low and W ′ a standard parabolic subgroup of W . Then x is ultra-low in
W .

Proof. This is clear by the definition of ultra-low elements. □

The following technical lemma will be useful for working with finite dihedral groups and shows that
U = Γ = S̃ for these groups. We denote W⟨s,t⟩ to be a dihedral group generated by the reflections s, t.
Denote the alternating word stst . . . of length n by [s, t]n.

Lemma 7.3. Let W⟨s,t⟩ = ⟨s, t | (st)l = s2 = t2 = 1⟩ with l < ∞. Then

(i) When l is odd,
(1) [s, t]n(αt) = [t, s]l−1−n(αs) for n odd and 1 ≤ n ≤ l − 1.
(2) [s, t]n(αs) = [t, s]l−1−n(αt) for n even and 1 ≤ n ≤ l − 1.

(ii) When l is even,
(1) [s, t]n(αt) = [t, s]l−1−n(αt) for n odd and 1 ≤ n ≤ l − 1.
(2) [s, t]n(αs) = [t, s]l−1−n(αs) for n even and 1 ≤ n ≤ l − 1.

(iii) Let
L =

(
αs, s(αt), st(αs), . . . , [s, t]l−1(αu)

)
where u = s for l odd and u = t for l even. Then for j ≤ l − 1

Φ([s, t]j) = {γ1, . . . , γj}
Φ([t, s]j) = {γl, γl−1, . . . , γl−j}

where γi is the ith root in L. In particular,

Φ([s, t]n) ∩ Φ([t, s]m) = {[s, t]n−1(δ)} = {[t, s]m−1(δ
′)}

for n + m = l + 1 and δ = αs if [s, t]n−1 ends in t and δ = αt if [s, t]n−1 ends in s (similarly for
[t, s]m−1) and δ′ is the other simple root.

(iv)

Φ1([s, t]j) = {γ1, γj} = ∂T ([s, t]−1
j ) and (7.1)

Φ1([t, s]j) = {γl, γl−j} = ∂T ([t, s]−1
j ) for j ≤ l − 1 (7.2)
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Proof. (i) − (iii) are straightforward calculations. To prove (iv) consider the following (we discuss the case
of (7.1) with (7.2) being entirely similar). The first equality is clear to see since for γi with i /∈ {1, j} we have
ℓ(sγi

[s, t]j) < ℓ([s, t]j) − 1 and so γi /∈ Φ1([s, t]j) and thus γi /∈ ∂T ([s, t]−1
j ) since ∂T ([s, t]−1

j ) ⊆ Φ1([s, t]j).
It remains to justify that Φ1([s, t]j) ⊂ ∂T ([s, t]−1

j ). Since γ1 is simple it is a boundary root. Then the
root γj is a boundary root since γj ∈ Φ0([s, t]j) and W = Γ when W is finite, hence the result follows by
Theorem 2.3. □

Corollary 7.1. Let W⟨s,t⟩ = ⟨s, t | (st)l = s2 = t2 = 1⟩ with l < ∞ and denote wo the longest element of
W⟨s,t⟩. Then

(i) Γ0 = W⟨s,t⟩ \ {e, wo}
(ii) W⟨s,t⟩ = U = Γ = S̃
(iii) If W⟨s,t⟩ ≤ W then W⟨s,t⟩ ⊆ U

Proof. (i) For W a finite dihedral group, we have W = Γ and it is clear that |Φ0(w)| = 1 for all w ̸= e, wo.
Then (ii) follows by Lemma 7.3 (iv) and Lemma 7.1. Then (iii) follows by Lemma 7.2. □

The following result will greatly simplify calculations in this section and shows that any root β whose
support Γ(β) is a standard finite parabolic dihedral root sub system is a boundary root.

Lemma 7.4. Let x ∈ W and β ∈ Φ1(x) where Γ(β) = {s, t} and W ′ = ⟨s, t | (st)l = s2 = t2 = 1⟩ is a
standard finite parabolic dihedral subgroup. Then there exists a unique y ∈ W ′ with Φ(x) ∩ Φ(y) = {β} and
Φ0(y) = {β}. Thus β ∈ ∂T (x−1).

Proof. If β is a simple root the result is clear. Hence assume β is non-simple (note that since β ∈ E by
Lemma 2.7 this then implies that W ′ is finite). Then β = [s, t]n−1(δ) for some 1 ≤ n ≤ l and where δ = αs

if [s, t]n−1 ends in t and δ = αt if [s, t]n−1 ends in s. It then follows from Lemma 7.3 (iv) that

Φ0([s, t]n) = {[s, t]n−1(δ)} = {[t, s]m−1(δ
′)} = Φ0([t, s]m)

and Φ([s, t]n) ∩ Φ([t, s]m) = {[s, t]n−1(δ)} where m + n = l + 1 and δ′ is the other simple root. Since
β ∈ Φ1(x) ∩ Φ+

W ′ we have β ∈ Φ1(xJ) with respect to the unique reduced decomposition x = xJ · xJ ,
where xJ ∈ W ′ and xJ ∈ XW ′ . Then by Lemma 7.3 (iii) it must follow that either xJ = [s, t]n or xJ =
[t, s]m. Without loss of generality, suppose xJ = [s, t]n. We claim that Φ(x) ∩ Φ([t, s]m) = {β}. Clearly,
Φ(xJ)∩Φ([t, s]m) = {β} and since Φ(x) = Φ(xJ)⊔xJΦ(x

J) it remains to justify that Φ([t, s]m)∩xJΦ(x
J) = ∅.

If xJ = e then we are done, otherwise for each α ∈ xJΦ(x
J) it follows that Coeffα(αu) > 0 for some simple

root αu /∈ {αs, αt}. If xJ = [t, s]m then swapping the roles of [s, t]n and [t, s]m in the above argument, we
have Φ(x) ∩ Φ([s, t]n) = {β}. This completes the proof of our claim. □

In [DDH15] the authors provide an explicit description of S̃ when W is right-angled (i.e. m(s, t) ∈ {2,∞}
for all s ̸= t) or when ΓW is a complete graph (i.e. m(s, t) ≥ 3 for all s ̸= t). This description allows us to
directly show that these elements are also ultra-low.

Proposition 7.5. [DDH15, Proposition 5.1]
(i) When W is right-angled then

S̃ =
⋃
J⊆S

WJ

where J ⊆ S is a set of pairwise commuting simple reflections.
(ii) When ΓW is the complete graph then

S̃ =
(
∪{(s,t)∈W | m(s,t)<∞} W⟨s,t⟩

)⋃(
∪(s,t,r)∈X

(
t[s, r]m(s,r)

)
where X consists of all triples (s, t, r) ∈ S with s, t, r distinct and m(s, t),m(s, r),m(t, r) all finite.

Given the explicit description of S̃ in these cases, our goal is then to show that S̃ ⊆ U . It then follows
from [PY22, Proposition 6.2] that S̃ ⊆ U ⊆ Γ ⊆ S̃ and thus S̃ = U = Γ.

The following relates to Theorem 7.1 (ii).

Lemma 7.6. Let ΓW be the complete graph, with notation as in Proposition 7.5. Then

Φ1(t[s, r]m(s,r)) = {αt, t(αs), t(αr)} = ∂T (t[s, r]−1
m(s,r))

for r, s, t are distinct and m(s, t),m(s, r),m(t, r) are all finite.
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Proof. We prove the first equality. Note that wo := [s, r]m(s,r) is the longest element of W⟨s,r⟩ and hence
Φ1(wo) = {αs, αr} by Lemma 7.1. The first equality then follows using Proposition 2.4 by direct calculation.
The second equality then follows by Lemma 7.4. □

Theorem 7.1. Let (W,S) be a Coxeter system such that
(i) W is right-angled, or;
(ii) The Coxeter graph is a complete graph

Then U = Γ = S̃.

Proof. (i) By Proposition 7.5, S̃ is the union of WJ where J ⊆ S is a set of pairwise commuting reflections.
We show that each WJ in this union consists of ultra-low elements. If |J | = 1 then the only element of WJ

is the simple reflection sJ , which is ultra-low. If |J | = 2 then the result follows by Corollary 7.1. For |J | > 2
then

WJ = {si | i ∈ J} ∪ {st | st = ts and s, t ∈ J} ∪ {wo}
where wo is the product of distinct simple reflections in J (the longest element of WJ). Hence the result
follows from Corollary 7.1 and Lemma 7.1.
(ii) In the case of ΓW being the complete graph, the elements contained in finite dihedral subgroups are ultra-
low by Corollary 7.1 and the elements of the form t[s, r]m(s,r) with s, t, r distinct and m(s, t),m(s, r),m(t, r)
all finite are ultra-low by Lemma 7.6.

This proves Theorem 4 for the cases (i) and (ii). □

Corollary 7.2. Let (W,S) be a right-angled Coxeter system. Then Γ0 = S.

Proof. By Theorem 7.1 we have S̃ = U and by Proposition 7.5 if w ∈ S̃ then w ∈ WJ where |J | > 2 is a set
of pairwise commuting reflections. It is then clear to see that if w /∈ S then |Φ0(w)| > 1. □

Corollary 7.3. Let W be a Coxeter group such that ΓW is a complete graph. Then Γ0 =
⋃

WJ \ {e, wJ}
where WJ is a standard finite dihedral parabolic subgroup of W and wJ is the longest element of WJ .

Proof. By Theorem 7.1 we have that

U = Γ = S̃ =
(
∪{(s,t)∈W | m(s,t)<∞} W⟨s,t⟩

)⋃(
∪(s,t,r)∈X

(
t[s, r]m(s,r)

)
where X consists of all triples (s, t, r) ∈ S with s, t, r distinct and m(s, t),m(s, r),m(t, r) all finite. By
Corollary 7.1 the elements in the left side of the above union (with the exception of e and wJ) are tight.

It is then straightforward to verify that the elements of the form t[s, r]m(s,r) are not tight gates. Since
[s, r]m(s,r)αs = −αr and [s, r]m(s,r)αr = −αs it follows by Definition 2.5 that t(αs), t(αr) ∈ Φ0(t[s, r]m(s,r)).

□

7.2. Rank 3 irreducible Coxeter groups. We now discuss the case of irreducible rank 3 Coxeter groups.
When ΓW is a complete graph, then the result follows by Theorem 7.1. When W is affine of type B̃2 or

G̃2 then U = Γ can be directly verified from the illustration of their cone type arrangements in Figure 4
in the following way: for each gate g ∈ Γ and each hyperplane H separating g from the identity such that
ℓ(sHg) = ℓ(g) − 1 (i.e. the hyperplanes corresponding to the roots Φ1(g)) there is a tight gate h such that
the only hyperplane separating g and h is H. This then directly shows that Φ1(g) = ∂T (g−1).

Hence we are left with the (non-affine) linear diagrams. We separate these diagrams into three types.

Type (I):
> 6

Type (II):

4 > 4
Type (III):

> 4 > 4

Figure 6. Throughout this chapter let the simple reflections s, t, u correspond to the vertices
reading left to right and denote a = ms,t and b = mt,u. The corresponding cone type
automata is illustrated in Figure 7, Figure 8, Figure 9 respectively.
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The following result allows us to only consider the above diagrams with all labels finite.

Theorem 7.2. Let W be a rank 3 Coxeter group with ΓW a linear diagram and such that one of the standard
parabolic dihedral subgroups of W is an infinite dihedral group (i.e. either W⟨s,t⟩ = W∞ or W⟨t,u⟩ = W∞ in
the labelling convention of Figure 6). Then

W⟨s,t⟩ ∪W⟨s,u⟩ = Γ = S̃ = L = U

.

Proof. By symmetry we may suppose that the right label in one of the diagrams in Figure 6 is ∞, then by
[PY19, Theorem 1], the automaton ABH is minimal and hence AS̃ is minimal since S̃ ⊆ L. Therefore we
have Γ = S̃ = L.

We claim that Γ = W⟨s,t⟩ ∪ W⟨s,u⟩. By Corollary 7.1 we have W⟨s,t⟩ ∪ W⟨s,u⟩ ⊆ Γ and note that by
Lemma 2.7 we have E = Φ+

{s,t} ⊔{αu}. First note that if w ∈ W⟨t,u⟩ and w ̸= u then Φ0(w) = β = aαt + bαu

for some a, b > 0. Since β /∈ E , β cannot be a boundary root. Hence by Theorem 2.3 w /∈ Γ. Now if there is
g ∈ Γ such that g is not contained in either W⟨s,t⟩ or W⟨s,u⟩ then g must have a suffix, which is also in Γ, in
the form of one of the following.

(i) u[t, s]k for some 1 ≤ k ≤ m(s, t)
(ii) u[s, t]k for some 1 ≤ k ≤ m(s, t)
(iii) tu, tsu.

Suppose g has a suffix in the form of (i). Now

∂T ([t, s]ku) ⊆ Φ1(u[t, s]k) ⊆ {αu} ∪ uΦ1([t, s]k) = {αu} ∪ u
(
{αt, c1αt + c2αs}

)
for some c1, c2 > 0, where the first inclusion follows by Lemma 2.9 and the second inclusion follows by
Proposition 2.4. The equality then follows by Lemma 7.3. Since u(αt) /∈ E and u(c1αt + c2αs) /∈ E it follows
that ∂T ([t, s]ku) = {αu} = ∂T (u) and thus u[t, s]k is not a gate, which contradicts suffix closure. The same
argument applies for (ii) and (iii), completing the proof of our claim. Then the fact that Γ = U follows by
Corollary 7.1 (iii). □

We now provide complete details for the proof of type I and be a little more brief for types II and III since
the majority of the proofs are exactly the same (and easier) as in the case of type I and the computations are
straightforward. We note that the automata illustrated in Figure 7, Figure 8, and Figure 9 was first studied
in [GMP17]. We illustrate them here for the purpose of proving U = Γ and to indicate the tight gates in
these groups.

In the remainder of the paper, it will be helpful to record the elementary roots in rank 3 with full support,
which can be directly computed following the results in [Bri98].

Lemma 7.7. Let W be a rank 3 Coxeter group whose graph ΓW is linear with finite labels (see Figure 6).
Let c1 = 2 cos π

mst
and c2 = 2 cos π

mtu
.

(1) For W of type I. Then

ES = {(c1, c1, 1), (c1, c1, c21 − 1), (1, 1, c1)}

(2) For W of type II or III then

ES = {(c1, 1, c2)}

Proof. See [Bri98, Lemma 4.7] and [Bri98, Proposition 6.7]. □

Remark 7.1. Our computations in this section is greatly simplified by Lemma 7.4. For any element x and
each β ∈ Φ1(x−1), if Γ(β) ∈ Φ+

W ′ for W ′ ∈ {W⟨s,t⟩,W⟨t,u⟩} then we immediately have β ∈ ∂T (x). Thus it
suffices to only consider the roots whose support is all of S.
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7.3. Type I. In this section, we detail the results specific to Type I graphs.
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Figure 7. The automaton Ao for (W,S) of Type I with b odd (the illustration includes all
states for the case b = 7 with the trailing blue and black dots indicating the additional ele-
ments of W⟨t,u⟩ when b > 7). The node coloured black denotes the identity (start state) and
the red, black and blue arrows correspond to s, t and u transitions respectively. Transitions
into gray filled nodes informs the reader to continue the reading of a word by continuing the
path at the corresponding white filled node with the same label. The nodes highlighted green
are the inverses of the tight gates whose final root has non-spherical support (see Appen-
dix A).
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Lemma 7.8. Let W be of type I. Then
(i) T (st)

u−→ T (stu)

(ii) T (sts)
u−→ T (stsu)

(iii) T (stsu)
t−→ T (stsut)

(iv) T (stsut)
u−→ T (stsutu)

are transitions in Ao, and each element above is ultra-low.
(Note that this result corresponds to transitions leaving nodes 15, 16, 20, 26 in Figure 7)

Proof. (i) By Lemma 7.3 (iv) we have Φ1(ts) = ∂T (st) = {αt, sαt} and using Proposition 2.4 we compute
Φ1(uts) = {αu, uαt, utαs} (note that by the calculations in Appendix A.1 uts is a tight gate with Φ0(uts) =
{utαs} and so utαs ∈ ∂T (stu)). It then follows by Theorem 4.1 and the calculations in Appendix A.1 that
we must have

Φ1(uts) ∩ Φ(s[t, u]b−1) = utαs = (1, 1, c1)

(ii) By Lemma 7.1 we have Φ1(sts) = {αs, αt} and using Proposition 2.4 we compute Φ1(usts) = {αs, αu, uαt}.
So the result is immediate by Lemma 7.4.

(iii) We compute Φ1(tusts) = {αt, tαs, tustαs}. Note that tustαs = tuαt, then again we are done by
Lemma 7.4.

(iv) Finally, we compute Φ1(utusts) = {αu, utuαt, utαs}. We claim that

Φ1(utusts) ∩ Φ(s[t, u]b−1) = utαs = (1, 1, c1)

It suffices to show that αu, utuαt /∈ Φ(s[t, u]b−1). Since s /∈ DL([t, u]b−1) we have Φ(s[t, u]b−1) = {αs} ⊔
sΦ([t, u]b−1) and hence Coeffαs(β) > 0 for each β ∈ Φ(s[t, u]b−1). □

For the remaining results we will use Lemma 7.4 without further direct reference.

Lemma 7.9. Let W be of type I. Then

(i) T (su)
t−→ T (sut)

(ii) T (sut)
u−→ T (sutu)

and each element above is ultra-low.
(Note that this result corresponds to the transitions leaving the nodes 18, 19 in Figure 7).

Proof. For (i), su is ultra-low by Corollary 7.1 and we compute Φ1(tus) = {αt, tαu, tαs}, so the result is
immediate.

For (ii) we compute from (i) to obtain Φ1(utus) = {αu, utαu, utαs}. By the same argument as in
Lemma 7.8 (iv), we have Φ(utus) ∩ Φ(s[t, u]b−1) = utαs. □

Lemma 7.10. Let W be of type I with k = b− 2.
(i) If b is odd, then T ([t, u]k)

s−→ T ([t, u]ks)

(ii) If b is even, then T ([u, t]k)
s−→ T ([u, t]ks)

and the elements above are ultra-low.
(Note that this result corresponds to the s-transition from the nodes 9 to 23 in Figure 7).

Proof. The proof is entirely the same for cases (i) and (ii), so we will just prove (i). Note that in both cases,
the alternating words [t, u]k and [u, t]k end in t and by Lemma 7.3 (iv) we have that

Φ1([u, t]−1
k ) = Φ1([t, u]k) = {αt, utαu}

We then compute Φ1(s[u, t]−1
k ) = Φ1(s[t, u]k) = {αs, sαt, sutαu}. Note that sutαu = (c1, c1, c

2
1 − 1). We

claim that
Φ1(s[t, u]k) ∩ Φ(utus[t, u]b−2) = {sutαu}

Since utus[t, u]b−2 is reduced, we have Φ(utus[t, u]b−2) = Φ(utus) ⊔ utusΦ([t, u]b−2). Clearly, sutαu ∈
Φ(utus) and {αs, sαt} ̸⊂ Φ(utus). Then note that Coeffαu

(β) > 0 for β ∈ utusΦ([t, u]b−2), hence αs, sαt /∈
Φ(utus[t, u]b−2). □

Lemma 7.11. Let W be of type I with k = b− 2.
(i) If b is odd then T ([t, u]ks)

u−→ T ([t, u]ksu)

(ii) If b is even then T ([u, t]ks)
u−→ T ([u, t]ksu)
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and the elements above are ultra-low.
(Note that this result corresponds to the u-transition from the nodes 23 to 28 in Figure 7).

Proof. The argument for both cases is again identical and so we will prove (i) (the proof of (ii) is exactly the
same, by replacing [t, u]k with [u, t]k).

In Lemma 7.10 we computed Φ1(s[t, u]k), and hence we compute Φ1(us[t, u]k) = {αu, αs, stαu}. We show
that stαu = (c1, c1, 1) is a boundary root of T ([t, u]ksu). We claim that Φ1(us[t, u]k) ∩ Φ(tus[t, u]k) =
{(c1, c1, 1)}. We have Φ(tus[t, u]k) = Φ(tus) ⊔ tusΦ([t, u]k). Clearly, (c1, c1, 1) ∈ Φ(tus) and since tus[t, u]k
is a reduced expression and is a tight gate by Appendix A.1 it follows that αu, αs /∈ Φ(tus[t, u]k). □

Lemma 7.12. Let W be of type I with b = mut odd and let k = b− 2. Then

(i) T ([t, u]kus)
t−→ T ([t, u]kust)

(ii) T ([t, u]kust)
s−→ T ([t, u]kusts)

(iii) T ([t, u]kust)
u−→ T ([t, u]kustu)

(iv) T ([t, u]kustu)
s−→ T ([t, u]kustus)

(v) T ([t, u]kustus)
t−→ T ([t, u]kustust)

(vi) T ([t, u]kustust)
u−→ T ([t, u]kustustu)

and the elements above are ultra-low.
When b is even, replace [t, u]k with [u, t]k in the above list, then the same results hold.
(Note that this result corresponds to the transitions leaving the nodes (28, 29, 30, 31, 32, 33 and 34) in

Figure 7).

Proof. Again, the case for b even is entirely the same and hence we show the case of b odd. For b even,
replace [t, u]k with [u, t]k in the below arguments.

(i) From Lemma 7.11 we computed Φ1(su[t, u]k), hence we compute Φ1(tsu[t, u]k) = {αt, tαu, tαs, stαu}.
By Appendix A the element tsu[t, u]k is a tight gate and then by Theorem 4.1 we have Φ1(tsu[t, u]k)∩
Φ(tsu) = {stαu}.

(ii) We then compute Φ1(stsu[t, u]k) = {αs, αt, tαu}.
(iii) Compute Φ1(utsu[t, u]k) = {αu, utαu, sutαu}. Then note from Lemma 7.10 (ii) we had

Φ1(s[t, u]k) = {αs, sαt, sutαu}
Hence Φ1(utsu[t, u]k) ∩ Φ(s[t, u]k) = {sutαu}.

(iv) We compute Φ1(sutsu[t, u]k) = {αs, αu, utαu}. So the result is immediate and similarly;
(v) We compute Φ1(tsutsu[t, u]k) = {αt, tαs, tutαu}.
(vi) Finally, compute Φ1(utsutsu[t, u]k) = {αu, utαs, ututαu}. And by the computations in Lemma 7.8 (i)

we have Φ1(utsutsu[t, u]k) ∩ Φ(s[t, u]b−1) = {utαs}.
□

Lemma 7.13. Let W be of type I with b = mut odd and k = b− 1. Then
(i) T (wut)

s−→ T (wuts)

(ii) T ([u, t]k)
s−→ T ([u, t]ks)

and the elements above are ultra-low.
When b is even, replace [u, t]k with [t, u]k in (ii), then both results hold.
(Note that this result corresponds to the s-transitions leaving the nodes 7 and 6 in Figure 7).

Proof. By Lemma 7.1 we have that wut is ultra-low then compute Φ1(swut) = {αu, αs, αs + αt} and hence
the result is immediate.

Similarly, we have Φ1([t, u]k) = {αt, uαt} and compute

Φ1(s[t, u]k) = {αs, sαt, sutαu}
Then by Lemma 7.12 (iii) we have Φ1(s[u, t]k) ∩ Φ(utus[t, u]b−2) = {sutαu}. □

7.3.1. Remaining Transitions. The previous results together show that the inverses of the minimal length
representatives of the states (gates of T ) coloured white and green in Figure 7 are indeed ultra-low. The final
step is then to show that there are not any more gates. The following sets of results prove the transitions to
the gray nodes in Figure 7.

Lemma 7.14. Let (W,S) be a Coxeter system whose graph is contained in Figure 6 and let b = mut.
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(1) For W of Type I:
(i) If b is odd, let w be an element of the form:

(a) [t, u]n for 2 ≤ n ≤ b− 3 for n even.
(b) [u, t]n for 3 ≤ n ≤ b− 2 for n odd.

(ii) If b is even, let w be an element of the form:
(a) [t, u]n for 2 ≤ n ≤ b− 2 for n even.
(b) [u, t]n for 3 ≤ n ≤ b− 3 for n odd.

Then T (w) → T (us) is an s-transition in Ao.
(Note that this result corresponds to the s-transitions leaving the nodes, 3, 5, 10, 12 in Figure 7 and

13, 16, 2, 4, 7 in Figure 8).

Proof. Note that in each case, the elements [t, u]n and [u, t]n end in u. Clearly ℓ(ws) > ℓ(w) so ws is reduced.
We now show T (us) = T (ws). We prove (i) with (ii) being entirely the same argument. Hence let b be odd
and n = b− 2. Note that this means [u, t]n = [u, t]−1

n . By Lemma 7.3 (iv) we have

Φ1(w) = Φ1([u, t]n) = ∂T ([u, t]n) = {αu, tuαt}

Using Proposition 2.4 we compute Φ1(sw) = {αs, αu, stuαt}. By direct calculation it follows that stuαt /∈ E
(since the coefficient of αs in stuαt is c21 − 1 in the notation of Lemma 7.7. Thus by Lemma 2.9, stuαt /∈
∂T (ws). Since simple roots are always boundary roots, we have ∂T (ws) = {αs, αu} = ∂T (us). Therefore by
Lemma 2.11 we have the following chain of inclusions:

T (us) ⊆ T ([u, t]ns) ⊆ T ([t, u]n−1s) ⊆ . . . ⊆ T (us)

which includes all the elements in (a) and (b). □

Lemma 7.15. Let (W,S) be a Coxeter system of type (I) and let b = mut.
(i) If b is odd, let w be an element of the form:

(1) [t, u]n for 3 ≤ n ≤ b− 4 for n odd.
(2) [u, t]n for 2 ≤ n ≤ b− 3 for n even.

(ii) If b is even, let w be an element of the form:
(1) [t, u]n for 3 ≤ n ≤ b− 3 for n odd.
(2) [u, t]n for 2 ≤ n ≤ b− 4 for n even.

then T (w) → T (ts) is a transition in Ao.
(We note that this result corresponds s-transitions leaving the nodes, 2, 4, 11 in Figure 7).

Proof. The proof is the same as in Lemma 7.14. We again prove (i) with (ii) being the exact same calculation.
Let n = b − 3, so [u, t]n = [t, u]−1

n then by Lemma 7.3 (iv) we have ∂T ([u, t]n) = Φ1([t, u]n) = {αt, tutαu}.
Using Proposition 2.4, we compute Φ1(s[t, u]n) = {αs, sαt, stutαu}. Since stutαu /∈ E (which can be seen from
Lemma 7.7), because the coefficient of αs is not c1 or 1) it follows by Lemma 2.9 that stutαu /∈ ∂T ([u, t]ns).
We can then immediately conclude that ∂T ([u, t]ns) = {αs, sαt} = ∂T (ts) and using Lemma 2.11 we have
the chain of inclusions

T (ts) ⊆ T ([u, t]ns) ⊆ T ([t, u]n−1s) ⊆ . . . ⊆ T (ts)

which includes all the elements in (a) and (b). □

Lemma 7.16. Let W be of type I with b = mut odd and k = b− 1. Then

(i) T ([t, u]k−1s)
t−→ T (sts)

(ii) T ([t, u]k−1ustust)
s−→ T (sts)

(iii) T (stsut)
s−→ T (sts)

(iv) T ([u, t]ks)
t−→ T (sts)

When b is even, swap [t, u]k with [u, t]k in the above list, then the same results hold.
(Note that this result corresponds to the transitions to the gray coloured nodes labelled 15 from the nodes

19, 21, 23, 33 and the s-transition from 26 to 15 in Figure 7).

Proof. Cases (i)-(iv) are all similar. Again, swap [t, u]k with [u, t]k in all calculations below for b even.
From Lemma 7.10 we have Φ1(s[t, u]k−1) = {αs, sαt, sutαu}. Then using Proposition 2.4 we compute

Φ1(ts[t, u]k−1) = {αt, αs, tsutαu}. However, by Lemma 7.7,we have tsutαu /∈ E and thus by the fact that
simple roots are always boundary roots, it follows that ∂T ([t, u]kst) = {αs, αt} = ∂T (sts).
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(ii), we have
Φ1(tsutsu[t, u]k−1) = {αt, tαs, tutαu}

and
Φ1(stsutsu[t, u]k−1) = {αs, αt, stutαu}

Now stut(αu) /∈ E and hence ∂T ([t, u]kustust) = {αs, αt} = ∂T (sts).
(iii) we computed in Lemma 7.8 that Φ1(tusts) = {αt, tαs, tuαt}. Again, it can be directly checked from

Lemma 7.7 that stutαt /∈ E . Therefore, ∂T (stsuts) = {αs, αt}.
(iv) From Lemma 7.13 we computed Φ1(s[t, u]k) = {αs, sαt, utαs} and we now compute Φ1(ts[t, u]k) =

{αs, αt, tutαs}. Again tutαs /∈ E , so ∂T ([u, t]kst) = {αs, αt}. □

There are just a few remaining cases for W of type I.

Lemma 7.17. Let W be of type I with b = mut odd and k = ℓ(wut)− 2. Then

(i) T ([t, u]ksutu)
t−→ T (utut)

(ii) T ([t, u]kustustu)
s−→ T (stsu)

(iii) T ([t, u]ksutustu)
t−→ T ([u, t]6)

(iv) T (wuts)
t−→ T ([t, u]kusts)

(v) T (stu)
t−→ T (tut)

(vi) T (stsutu)
t−→ T (tutut)

(vii) T (sutu)
t−→ T (utut)

(viii) T (sutu)
s−→ T (stsu)

When b is even, swap [t, u]k with [u, t]k in the above list, then the same results hold.
(Note that this result corresponds to the following transitions in Figure 7: 31 → 4, 34 → 20, 34 → 6,

22 → 30, 24 → 11, 27 → 9, 25 → 4 and 25 → 20).

Proof. Again, swap [t, u]k with [u, t]k in all calculations below for b even.
(i) We have from Lemma 7.12 (iii) that

Φ1(utsu[t, u]k) = {αu, utαu sutαu}.

Then using Proposition 2.4 we compute

Φ1(tutsu[t, u]k) = {αt, tutαu, tsutαu}

Since tsutαu /∈ E by Lemma 7.4 we immediately have

∂T ([t, u]kustu) = {αt, tutαu} = ∂T (utut).

(ii) From Lemma 7.12 (vi) we had

Φ1(utsutsu[t, u]k) = {αu, utαs, ututαu}

and thus compute Φ1(sutsutsu[t, u]k) = {αs, αu, uαt, sututαu}. Then since
sututαu /∈ E by Lemma 7.8 (ii) and Lemma 7.4 again, we have

∂T ([t, u]ksutustsu) = {αu, αs, uαt} = ∂T (stsu)

(iii) Following from (ii) we compute Φ1(tutsutsu[t, u]k) = {αt, tutαs, tututαu}. Note that tutαs /∈ E so

∂T ([t, u]ksutustut) = {αt, tututαu} = ∂T ([u, t]6).

(iv) From Lemma 7.13 (i) we had Φ1(swut) = {αu, αs, αs + αt} and thus we compute Φ1(tswu,t) =
{αt, αs, tαu} = ∂T ([t, u]kusts) from Lemma 7.12 (ii).

(v) From Lemma 7.8 (i) we have Φ1(uts) = {αu, uαt, utαs}. Then using Proposition 2.4 we compute
Φ1(tuts) = {αt, tuαt, tutαs}. Since tutαs /∈ E , we must have ∂T (stut) = {αt, tu(αt)} = ∂T (tut).

(vi) Similarly, from Lemma 7.8 (iv) we have Φ1(utusts) = {αu, utuαt, utαs}. Then we compute Φ1(tutusts) =
{αt, tutuαt, tut(αs)} and tut(αs) /∈ E so ∂T (stsutut) = {αt, tutuαt} = ∂T (tutut).

(vii) From Lemma 7.9 (ii) we have Φ1(utus) = {αu, utαu, utαs}. Then we compute Φ1(tutus) = {αt, tutαu, tutαs}.
Again tutαs /∈ E and the result follows.
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(viii) Finally compute Φ1(sutus) = {αs, αu, sutαu, uαt}. Note that stsu is a suffix of sutus = ustsu, so
T (sutus) ⊆ T (stsu), and by Lemma 7.8 (ii) we have ∂T (stsu) = {αs, αu, uαt}. To show equality, we
just need to show that sutαu /∈ ∂T (sutus). Note that sutαu = (c1, c1, c

2
1−1). By Theorem 4.1 and Ap-

pendix A.1, if sutαu ∈ ∂T (sutus), then we must have either Φ(sutus)∩Φ(s[t, u]b−2) = (c1, c1, c
2
1−1) or

Φ(sutus)∩Φ(utus[t, u]b−2) = (c1, c1, c
2
1−1). But clearly, αs ∈ Φ1(s[t, u]b−2) and αu ∈ Φ1(utus[t, u]b−2).

Therefore, sutαu /∈ ∂T (sutus).
□

The above results complete the proof for W of type I.

Theorem 7.3. Let (W,S) be the Coxeter system of Type I with ΓW as illustrated in Figure 6. Let a be the
left edge label and b the right edge label in ΓW . Let W ′ be the Coxeter system obtained from W by replacing
b with b+ 1 in ΓW and denote UW ′ and UW to be the ultra-low elements respectively. Then

|UW ′ | = |UW |+ 2

The effect of increasing the label b by 1 adds only two additional ultra low elements corresponding to the
two additional elements of the finite dihedral group W⟨t,u⟩. The automaton is illustrated in Figure 7 for b
odd (the automaton for b even is entirely similar with only a swapping of the alternating word [t, u] with
[u, t] in some instances).

Corollary 7.4. Let W be of type I with 7 ≤ b = mut < ∞. Then

|U | = 35 + 2(b− 7) = 21 + 2b
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7.4. Type II. We illustrate the cone type automaton in Figure 8 below. A number of results in this section
apply to both Types II and III.
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Figure 8. The automaton Ao for (W,S) of Type II with a and b odd (the illustration
includes all states for the case a = b = 5 with the trailing dashes indicating additional
elements of W⟨t,u⟩ and W⟨t,s⟩ when a, b > 5). One may note that the automaton here is
similar to Type I but less complicated in the sense that there are less nodes at the top of
the figure. Again, the states highlighted green indicate the (inverses of) tight gates whose
final root has non-spherical support.

Lemma 7.18. Let W be of type II or III. Then T (su)
t−→ T (sut) is a transition in Ao and sut is ultra-low.

(Note that this result corresponds to the transition 10 → 23 in Figure 8 and 10 → 22 in Figure 9).

Proof. The proof is exactly the same computation as in Lemma 7.9 (i). □

Lemma 7.19. Let W be of type II with a, b odd. Then
(i) T ([s, t]a−1)

u−→ T ([s, t]a−1u)

(ii) T (wst)
u−→ T (wstu)

(iii) T (wstu)
t−→ T (wstut)

and
(iv) T ([u, t]b−1)

s−→ T ([u, t]b−1s)

(v) T (wut)
s−→ T (wuts)

(vi) T (wuts)
t−→ T (wutst)

where each element w above is ultra-low.
If a is even then swap [s, t]a−1 in (i) with [t, s]a−1 and if b is even then swap [u, t]b−1 in (iv) with [t, u]a−1,

then the same results hold.
(Note that this result corresponds to the transitions 14 → 25, 15 → 20, 20 → 21, 6 → 24, 5 → 19, 19 → 22,

in Figure 8).
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Proof. Note that (iv)-(vi) is the same as (i)-(iii) with the roles of s and u swapped, hence we will just provide
the details for (i)-(iii). If a is even, then replace [s, t]a−1 with [t, s]a−1 in the proofs below, and the same
calculations hold. Similarly if b is even, replace [u, t]b−1 with [t, u]b−1.

(i) By Lemma 7.3 we have Φ1([t, s]a−1) = {αt, sαt} and thus using Proposition 2.4 we compute
Φ1(u[t, s]a−1) = {αu, uαt, usαt}. By Lemma 7.4 again we just need to justify that usαt = (c1, 1, c2) ∈
∂T ([s, t]a−1u). Now Φ1([t, u]b−1) = {αt, u(αt)} and by Proposition 2.4 we compute Φ1(s[t, u]b−1) =
{αs, sαt, usαt}}. Therefore,

Φ1(u[t, s]a−1) ∩ Φ(s[t, u]b−1) = {usαt}
(ii) By Lemma 7.1 we have Φ(wst) = {αs, αt} and compute

Φ1(uwst) = {αu, αs, uαt}
hence the result by Lemma 7.4.

(iii) We compute Φ1(tuwst) = {αt, tαs, tuαt}, and hence the result.
□

This proves that each of the states indicated by black outlined nodes in Figure 8 are ultra-low. We now
prove that there are not any more (and prove the remaining transitions into the gray coloured states).

Lemma 7.20. Let W be of type II with a, b odd. If w be an element of the form
(i) (1) [t, s]n for 2 ≤ n ≤ a− 1 for n even

(2) [s, t]n for 3 ≤ n ≤ a− 2 for n odd

Then T (w)
u−→ T (us) is a transition in Ao, and if w is an element of the form;

(ii) (1) [t, u]n for 2 ≤ n ≤ b− 1 for n even
(2) [u, t]n for 3 ≤ n ≤ b− 2 for n odd

Then T (w)
s−→ T (us) is a transition in Ao.

If a is even then (1) and (2) in (i) should be replaced with
(1) [s, t]n for 3 ≤ n ≤ a− 1 for n odd
(2) [t, s]n for 2 ≤ n ≤ a− 2 for n even

Similarly if b is even then (1) and (2) in (ii) should be replaced with
(1) [u, t]n for 3 ≤ n ≤ b− 1 for n odd
(2) [t, u]n for 2 ≤ n ≤ b− 2 for n even

(Note that this result corresponds to the u and s transitions from the nodes labelled 13, 16, 18, 2, 4, 7 in
Figure 8).

Proof. The proof is the same Lemma 7.14. We again prove (i) in the case of a odd and omit the details for
(ii).

Let n = a− 1, then Φ1([t, s]−1
n ) = {αs, tαs}. Using Proposition 2.4 we compute

Φ1(u[t, s]−1
n ) = {αu, αs, utαs}

then since utαs /∈ E , we have ∂T ([t, s]nu) = {αu, αs} = ∂T (us). Then by Lemma 2.11 we have the chain of
inclusions

T (us) ⊆ T ([t, s]nu) ⊆ T ([s, t]n−1u) ⊆ . . . ⊆ T (tsu) ⊆ T (us)

which includes all the elements in (1) and (2). □

The next result is very similar to Lemma 7.20.
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Lemma 7.21. Let W be of type II. When b is odd and w is an element of the form
(1) [t, u]n for 3 ≤ n ≤ b− 2 for n odd
(2) [u, t]n for 2 ≤ n ≤ b− 3 for n even

Then T (w)
s−→ T (ts) is a transition in Ao. If b is even then (1) and (2) above should be replaced with

(1) [u, t]n for 2 ≤ n ≤ b− 2 for n even
(2) [t, u]n for 3 ≤ n ≤ b− 3 for n odd

(Note that this result corresponds to the s-transitions from the nodes labelled 3, 8 in Figure 8). When a is

odd and w is an element of the form
(1) [t, s]n for 3 ≤ n ≤ a− 2 for n odd
(2) [s, t]n for 2 ≤ n ≤ a− 3 for n even

Then T (w)
u−→ T (tu) is a transition in Ao. If a is even then (1) and (2) above should be replaced with

(1) [s, t]n for 2 ≤ n ≤ a− 2 for n even
(2) [t, s]n for 3 ≤ n ≤ a− 3 for n odd

(Note that this result corresponds to the u-transitions from the nodes labelled 12, 17 in Figure 8).

Proof. The proof is essentially the same as Lemma 7.20. We again show the case of b odd and leave the
computation for the other cases to the reader. Let n = b − 2, then Φ1([t, u]−1

n ) = Φ1([t, u]n) = {αt, utαu}.
Using Proposition 2.4 we compute

Φ1(s[t, u]n) = {αs, sαt, sutαu}
then since sutαu /∈ E , we have ∂T ([t, u]ns) = {αs, sαt} = ∂T (ts). Then by Lemma 2.11 we have the chain
of inclusions

T (ts) ⊆ T ([t, u]ns) ⊆ T ([u, t]n−1s) ⊆ . . . ⊆ T (uts) ⊆ T (ts)

which includes all the elements in (1) and (2). □

The final result of this section covers the remaining transitions.

Lemma 7.22. Let W be of type II with a, b odd. Then

(i) T ([s, t]a−1u)
t−→ T (tut)

(ii) T (wstut)
u−→ T (tutu)

(iii) T (wstut)
s−→ T (sts)

(iv) T ([u, t]b−1s)
t−→ T (tst)

(v) T (wutst)
u−→ T (utu)

(vi) T (wutst)
s−→ T (tsts)

(vii) T (ust)
s−→ T (sts)

(viii) T (ust)
u−→ T (utu)

If a is even then swap [s, t]a−1 in (i) with [t, s]a−1 and if b is even then swap [u, t]b−1 in (iv) with [t, u]b−1,
then the same results hold.

(Note that this result corresponds to the transitions from the nodes labelled 25 → 3, 21 → 4, 21 → 13, 24 →
17, 22 → 7, 22 → 16, 23 → 13, 23 → 7 in Figure 9).

Proof. Again, if a is even, then replace [s, t]a−1 with [t, s]a−1 in the proofs below, and the same calculations
hold. Similarly if b is even, replace [u, t]b−1 with [t, u]b−1.

(i) From Lemma 7.20 we have Φ1(u[t, s]a−1) = {αu, uαt, usαt} and compute
Φ1(tu[t, s]a−1) = {αt, tuαt, tusαt}. Then since tusαt /∈ E it follows by Lemma 7.4 that we must have

∂T ([s, t]a−1ut) = {αt, tu(αt)} = ∂T (tut)

(ii) By Lemma 7.19 (iii) we have Φ1(tuwst) = {αt, tαs, tuαt}. Then we compute
Φ1(utuwst) = {αu, utαs, utuαt}. Again since utαs) /∈ E the result follows.

The proofs of (iii)-(viii) again all have the exact same structure and can be easily verified. For each element
w on the left hand side of the arrow, we compute Φ1(siw). Then there is a single β ∈ Φ1(siw) \ E with
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β ∈ Φ0(siw). Hence β /∈ ∂T (w−1si) by Lemma 2.9. The remaining roots of Φ1(siw) have dihedral support
and therefore are boundary roots by Lemma 7.4. □

This completes the case for W of type II. We have the following consequence combining the results in this
section.

Theorem 7.4. Let (W,S) be the Coxeter system of Type II with ΓW as illustrated in Figure 6. Let a be the
label of the left edge and b the label of the right edge in ΓW . Let W ′ be the Coxeter system obtained from W
by replacing b with b+ 1 or by replacing a with a+ 1 in ΓW . Then

|UW ′ | = |U |+ 2

Corollary 7.5. Let W be of type II with 4 < a = mst < ∞ and 4 < b = mut < ∞. Then

|U | = 26 + 2(a− 5) + 2(b− 5) = 6 + 2(a+ b)

7.5. Type III. We end this work with a complete description of the ultra-low elements for type III. Type
III is very similar to type II, as illustrated in Figure 9.
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Figure 9. The automaton Ao for (W,S) of Type III. All transitions and ultra-low elements
remain the same as in type II, with the exception of the states at the "top" of the diagram
(compare the top part of Figure 8 with this automaton to see that there is an "extra" non-
spherical state (labelled 18) here.

Specifically, the following results from type II carry over to type III with of course, a = 4 being even. The
proofs are exactly the same, and so we leave the computations to the reader. These results correspond to all
the same transitions in Figure 8 as in Figure 9 with the exception of the "extra" state and it’s transitions at
the top of the diagram (transitions 18 → 19, 19 → 6, 19 → 20).
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(i) Lemma 7.18 (corresponding to the transition 10 → 23 in Figure 9).
(ii) Lemma 7.19 (for the transitions 5 → 17, 17 → 18, 6 → 23, 14 → 20, 20 → 21 and 15 → 24 in Figure 9).
(iii) Lemma 7.20 (for the transitions 2 → 10, 16 → 10, 7 → 10, 13 → 10 and 4 → 10 in Figure 9).
(iv) Lemma 7.21 (for the transitions 3 → 16, 8 → 16, 12 → 2 in Figure 9).
(v) Lemma 7.22 excluding (v) (for the transitions 24 → 3, 21 → 4, 21 → 13, 23 → 15, 18 → 14, 22 →

13, 22 → 7 in Figure 9).
The following results are specific to type III and correspond to the transitions 18 → 19, 19 → 6 and

19 → 20.

Lemma 7.23. Let W be of type III. Then T (wutst)
u−→ T (wutstu) is a transition in Ao and wutstu is

ultra-low.

Proof. We compute Φ1(tswut) = {αt, sαt, tαu} and using Proposition 2.4 we compute Φ1(utswut) = {αu, usαt, utαu}.
Then by what was computed in Lemma 7.19 (i) we have

Φ1(utswut) ∩ Φ(s[t, u]b−1) = {usαt}
□

The next result includes the remaining transitions.

Lemma 7.24. Let W be of type III. Then

(i) T (wutstu)
t−→ T (utut)

(ii) T (wutstu)
s−→ T (wstu)

are transitions in Ao.

Proof. (i) From Lemma 7.23 we have Φ1(utswut) = {αu, usαt, utαu} and compute
Φ1(tutswut) = {αt, utαu, tutsαt}. Since tutsαt /∈ E The result is immediate. Similarly, for (ii) we compute
Φ1(sutswut) = {αs, αu, uαt, sut(αu)} and sut(αu) /∈ E by Lemma 7.7. By Lemma 7.19 (ii) we then have
∂T (wutstus) = ∂T (wstu). □

This concludes the proof for W of type III.

Corollary 7.6. Let W be of type (II) with a = 4 and 5 ≤ b = mut < ∞. Then

|U | = 25 + 2(b− 5) = 15 + 2b

8. Further results on tight gates

We conclude this note by summarising some results on tight gates which follow by of our calculations in
Section 7 and Appendix A. The conclusion of the results in this section is Theorem 5.

Corollary 8.1. Let W be a Coxeter group of one of the following types
(i) W is finite dihedral,
(ii) W is irreducible rank 3
(iii) W is right-angled, or;
(iv) The Coxeter graph ΓW is a complete graph.
Then for each non-simple super-elementary root β there is a unique pair of tight gates x, y such that

Φ(x) ∩ Φ(y) = {β}
and Φ0(x) = Φ0(y) = {β}.

Proof. (i) This follows by Lemma 7.3 (iii).
(ii) For irreducible rank 3 Coxeter groups with a linear graph, see the computations in Appendix A. For

the rank 3 groups of affine type the results can be visually verified by the illustrations of the cone type
partition T in Figure 4. Rank 3 groups with a complete graph are addressed in (iv).

(iii) This follows trivially, since there are no non-simple super-elementary roots in this case.
(iv) This follows by the discussion in Corollary 7.3.

□

Corollary 8.2. Let W be a Coxeter group of a type listed in Corollary 8.1. Then

|Γ0| = 2|E | − |S|
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Proof. Note that in each case, we have E = S, since:
(i) When W is finite dihedral, E = Φ+ = S by Lemma 7.3 (iii).
(ii) By [Yau21, Proposition 6.0.7] for rank 3 we have E = S.
(iii) When W is right-angled, by Lemma 2.7 we have E = S = ∆.
(iv) When ΓW is a complete graph, then again by Lemma 2.7 if β ∈ E the subgraph Γ(β) cannot contain

a curcuit or an infinite bond, hence E =
⋃

{s,t}⊆S Φ+
⟨s,t⟩ with m(s, t) < ∞. Thus again by Lemma 7.3

(iii) E = S.
Then for each simple root, the corresponding simple reflection is a tight gate and it’s own witness. By
Corollary 8.1 for each non-simple super elementary root there is a unique pair of tight gates x, y such that
Φ(x) ∩ Φ(y) = {β} and Φ0(x) = Φ0(y) = {β}. Hence

|Γ0| = 2 ∗ (|E | − |S|) + |S| = 2|E | − |S|
□

Appendix A. Tight gates in rank 3

We utilise Algorithm 5.1 to compute and record the tight gates in rank 3 and their final roots. Retaining
the labelling convention as described in Figure 6 let

X =
(
W⟨s,t⟩ \ {e, ws,t}

)
∪
(
W⟨t,u⟩ \ {e, wt,u}

)
where ws,t and wt,u are the longest elements of their respective dihedral groups. Let b = mu,t. The elements
X are tight gates by Corollary 7.1.

A.1. Type I. The tight gates are:

Γ0 = X ∪ {uts, s[t, u]b−2, us[t, u]b−2, tus[t, u]b−2, utus[t, u]b−2, s[t, u]b−1}
The final roots of the tight gates in X are Φ+

W⟨s,t⟩
∪ Φ+

W⟨t,u⟩
. The final roots of the remaining tight gates

are respectively:

{(1, 1, c1), (c1, c1, c21 − 1), (c1, c1, 1), (c1, c1, 1), (c1, c1, c
2
1 − 1), (1, 1, c1)}

Note that these are the elementary roots with full support and that for each root there is a single pair of
tight gates with the root as their final root.

A.2. Type II. We note that from Lemma 7.7 for types II and III there is a single elementary root of full
support. The tight gates are:

Γ0 = X ∪ {u[t, s]a−1, s[t, u]b−1}
The final root of u[t, s]a−1 and s[t, u]b−1 is the root (c1, 1, c2).

A.3. Type III. The tight gates are:

Γ0 = X ∪ {utst, s[t, u]b−1}
The final root of utst and s[t, u]b−1 is also the root (c1, 1, c2).
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