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ABSTRACT. In this article, we create an artificial neural network (ANN) that combines
both classical and modern techniques for determining the key length of a Vigenère cipher.
We provide experimental evidence supporting the accuracy of our model for a wide range of
parameters. We also discuss the creation and features of this ANN along with a comparative
analysis between our ANN, the index of coincidence, and the twist-based algorithms.

1. INTRODUCTION

Artificial Neural Networks (ANNs) have recently seen a plethora of applications through-
out academia. The development of open-source software libraries, such as TensorFlow and
Keras, have made it possible to quickly train and test ANNs for a variety of purposes. In
particular, there has been a steady stream of applications to cryptanalysis related questions
in historical cryptology in the last 10 years; see [10] and [8] for examples of ANNs cre-
ated for cipher detection among sets of classical ciphers. Here, we build an ANN to attack
another important cryptanalysis question in historical cryptology: how can we accurately
predict the key length of a Vigenère cipher?

The Vigenère cipher is one of the most well-studied historical ciphers. The development
of this cipher can be traced back to the mid 1400s and involved several cryptologists. We
refer the reader to Chapter 4 of [6] for a detailed description of the history of the Vigenère
cipher. For this cipher, a keyword of length k is used to designate a sequence of k shifts that
are repeatedly used in order for encryption. Once a cryptanalyst knows the key length is k,
then they can partition the ciphertext into k cosets, each of which contains letters that have
been encrypted with the same shift (or the same alphabet for an arbitrary polyalphabetic
substitution cipher). Assuming these cosets are sufficiently large, it is a straightforward
task to finish breaking this cipher via frequency analysis; see [2, Chapter 2] for an example
that implements this technique. This all motivates the importance of having accurate and
efficient algorithms for first finding the key length.

There are several algorithms that have been developed to predict this key length, which
we review in detail in Section 2. Historically, the Babbage–Kasiski test [7] and the index
of coincidence [15] are the two most well known techniques, which have been applied
for over a hundred years now. More recently, a series of papers have introduced the twist-
based algorithms as new approaches to predict key length. The original twist algorithm was
introduced by Barr–Simoson in [1]. Park–Kim–Cho–Yum provided an improved version,
called the twist+ algorithm, in [12]. Further modifications were made by Millichap–Yau–
Pate–Carns in [9] to build the twist++ algorithm. For a wide variety of key lengths and
text lengths, each of these algorithms has its own strengths and weaknesses. Therefore, it
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is natural to build an ANN for key length prediction that uses these algorithms in hopes of
highlighting their individual strengths, while mitigating their weaknesses.

Our work here provides an accurate model for predicting the key length of a Vigenère
cipher for a large range of key lengths and text lengths. This ANN implements both clas-
sical tools (index of coincidence in a variety of formats) and much more recent algorithms
(twist-based algorithms) along with a few other features. Our exact model features are
highlighted in Section 3.3. Accuracy comparisons with the index of coincidence and the
twist-based algorithms are given in Table 2, which clearly highlight the superior accuracy
of our ANN for a variety of text lengths.

Our paper is organized as follows. In Section 2, we review a variety of well-established
methods from the literature for predicting the key length of a Vigenère cipher and provide
an analysis of their strengths and weaknesses. All of these tools were tested as potential
features for our ANN. In Section 3, we discuss the creation, training, and evaluation of an
ANN for finding the key length of the Vigenère cipher.

2. KEY LENGTH ATTACKS

In this section, we review a variety of algorithms that predict the key length of a Vigenère
cipher. Strengths and weaknesses of these algorithms will also be discussed.

2.1. The Babbage–Kasiski Test. For the Babbage–Kasiski test, one looks for repetitions
of n-grams (n ≥ 3) in the ciphertext. Usually, such repetitions represent the same plaintext
with the same portion of the keyword used to encrypt that plaintext; see [13] for a analysis
of accidental repetitions. Thus, the distance between these repetitions should be a multiple
of the key length. By finding several such repetitions and calculating the greatest common
divisor of these distances that show up most frequently, one can then formulate a conjecture
for the key length. This test has the advantage of being independent of the underlying
language and alphabet.

There are several implementation challenges that can occur when applying the Babbage–
Kasiski Test. If a ciphertext does not contain any repeated trigrams or only contains a few,
then the Babbage–Kasiski test might not prove helpful. In addition, the Babbage–Kasiski
test could easily direct one towards a multiple of the key length or a divisor of the key
length, rather than the actual key length. Furthermore, there might be multiple values that
frequently show up as distinct greatest common divisor of distances between repetitions.
How should one decide which is the best conjecture for the key length or an ordering for
key length conjectures?

2.2. The Index of Coincidence. The Index of Coincidence (IC) calculates the probability
that two randomly chosen distinct letters from a text are the same. Mathematically,

(1) IC(M ) =
∑

26
i=1 fi( fi −1)
N(N −1)

,

where N is the length of a text M and fi represents the frequency of the ith letter of the
alphabet in this ciphertext. When the index of coincidence is applied to a Vigenére
ciphertext M , then one can estimate the key length k via
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(2) k ≈ 0.028N
IC(M )(N −1)−0.038N +0.066

.

Furthermore, if one has a conjectured key length of m, then one can partition M into m
cosets, where coset Mi contains the ciphertext letters encrypted by the ith key letter, for
1 ≤ i ≤ m. From here, one can apply the IC to each Mi. If these values approximate the IC
for the underlying language of the plaintext, then there is a good chance m is the actual
key length since the IC of a set of letters coming from a shift is the same as the IC of the
corresponding plaintext letters. We refer the reader to Section 2.3 of [2] for details on (2)
and an example of applying the IC to cosets of a ciphertext.

While it is simple to calculate the IC and the approximation for k via Equation (2),
this tool does have its weaknesses. For sufficiently long keys, estimated key lengths are
sensitive to a small perturbation in the IC. Thus, the IC becomes less reliable as key length
increases, which can also be seen experimentally in Figure 2 of [5] and Figure 3 of [12].
In addition, the key length estimate given above is dependent on your keyword containing
k distinct letters. If many letters are repeated in the keyword, then the IC will most likely
underestimate k. Finally, the IC is dependent on your underlying language since different
languages have different letter frequency distributions.

2.3. The Twist-Based Algorithms. Before reviewing the twist-based algorithms, we first
introduce some necessary notation and definitions. Suppose we are given a text M of
length N. We first form a sample signature for M , which is C =< c1,c2, . . . ,c26 >, where
ci =

fi
N with fi representing the number of frequencies of the ith most common letter in

M . In other words, C is the ordered set of relative frequencies for text M . Then we can
compute the twist of a sample signature:

♢C =
26

∑
i=14

ci −
13

∑
i=1

ci.

When a sufficiently long text M is a plaintext or a ciphertext encrypted with a monoalpha-
betic substitution cipher, then ♢C should reflect the behavior of the underlying language
(English in all cases considered in this paper) and be relatively large based on the variance
of frequency distributions in the underlying language. However, if M is a random text that
would lack this variation in frequency distribution, then we should expect ♢C to be quite
small.

Now, suppose M is a ciphertext of length N that was encrypted using the Vigenère
cipher. Further, suppose we conjecture a key length of m ∈ N. Then we can partition M
into m cosets {M j}m

j=1, where M j contains all the letters encrypted with the jth letter of the
(conjectured) key of length N. Let C j represent the sample signature for M j, and let

♢C j =
26

∑
i=14

ci, j −
13

∑
i=1

ci, j
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be the corresponding twist of each such sample signature. If our key length conjecture is
correct, then each ♢C j should be relatively large, since each such coset should approx-
imately model the frequencies of the underlying language. This all motivates the twist
algorithm definition introduced by Barr-Simoson [1].

Definition 2.1. Let M be a text of length N. The twist algorithm finds m ∈ N+ that
maximizes the twist index

T (M ,m) =
(100

m

m

∑
j=1

♢C j

)
.

While the twist algorithm provided a good first step towards a new key length attack,
it does have some significant flaws. The biggest issue is the fact that the twist index is
increasing as a function of multiples of the actual key length k. This fact is proven for
certain cases and verified experimentally for all other cases in [9]. As a result, the twist
index will always make an incorrect prediction, assuming nontrivial multiples of the key
length are part of the domain of T (M ,m) for a fixed M . This flaw inspired Park–Kim–
Cho–Yum to design the twist+ algorithm in [12].

Definition 2.2. Let M be a text of length N. The twist+ algorithm finds m ∈ N+ that
maximizes the twist+ index

T+(M ,m) = T (M ,m)− 1
m−1

m−1

∑
µ=1

T (M ,µ).

Park–Kim–Cho–Yum provide experimental evidence highlighting the twist+ algorithm
as far more successful than both the index of coincidence and the twist algorithm for a
variety of parameters; see Figure 3 in [12]. However, they also highlight the fact that the
twist+ algorithm does become less effective when short key lengths were used on rela-
tively short texts. Furthermore, it is unclear what domain of m-values are considered for
maximizing both the twist index and the twist+ index in these definitions. In particular, if
one increases this domain, then the twist+ algorithm decreases in success, as highlighted
in Figure 1 and Figure 2 of [9]. Similar to the twist algorithm, there is an issue with the
twist+ algorithm predicting a multiple of the key length, though under more specialized
parameters. In hopes of constructing a twist-based algorithm that won’t predict multiples
of the key length and maintain a high level of accuracy even for large domains of m-values,
Millichap-Yau–Pate–Carns introduced the twist++ algorithm in [9]. This algorithm finds
the m-value that maximizes a local change in twist index.

Definition 2.3. Let M be a text of length N. The twist++ algorithm finds m ∈ N+ that
maximizes the twist++ index

T++(M ,m) = T (M ,m)− 1
2

(
T (M ,m−1)+T (M ,m+1)

)
,

where m ∈ S ⊆ {2, . . . ,q} and N = 12q+ r for quotient q and remainder r.

Note, this third definition highlights the need to specify a domain of potential key lengths
to check. In particular, the value q is set as a maximal m-value one should consider since
for m > q, we have T (M ,m) = 100. Thus, twist (and twist+ and twist++) indices will not
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provide any useful information for such values. Statistics from Figure 1 and Figure 2 in [9]
show that the twist++ algorithm performs exceptionally well under a variety of parameters,
including ones where the twist+ algorithm drops in accuracy. While the twist++ algorithm
is the most accurate twist-based algorithm for most parameters (variety of key lengths and
text lengths), there are still some specialized conditions under which the twist++ algorithm
might predict the largest nontrivial divisor of the actual key length; see Section 3 of [9] for
a discussion on this and examples.

2.4. Other Tests. Here, we briefly discuss a few other statistical and quantitative tools that
can assist with key length attacks. These tools were also tested as potential features for our
ANNs discussed in Section 3.

In [5], Matthews introduced two basic tools, H and ∆, that are functions of frequencies of
individual letters in a ciphertext and both are highly correlated with the key length k. Given
a text M , the function H(M ) sums the percentage frequencies of the seven most common
letters in M , and the function ∆(M ) is the difference between the sum of the percentage
frequencies of the seven most common letters in M and the sum of the percentage frequen-
cies of the seven least common letters in M . Matthews performed a regression analysis
that showed a linear relationship between H and k and a linear relationship between ∆ and
k. While Matthews highlighted H and ∆ as improvements over the IC, both of these tools
were only applied to a specific set of key lengths (k ∈ {3,5,9,13,17,21}) and accuracy
rates were still quite low.

One other tool that could assist with key length attacks is (information) entropy, which
measures the amount of “information” in a text and was introduced by Claude Shannon in
1948 [14]. The first order entropy of a text M is defined as

H1(M ) =−∑ fi log2( fi),

where fi is the relative frequency of the ith letter from the underlying alphabet. Higher
order entropies can also be calculated by considering frequencies of digrams, trigrams, etc.
With regards to key length attacks, information entropy could serve a similar role to the IC,
as both are functions of the individual frequencies of a text and ciphertexts encrypted with
varying lengths will have varying frequency distributions. We refer the reader to Chapter
11 of [2] for a further introduction to information entropy.

3. A NEURAL NETWORKS APPROACH TO KEY LENGTH

The discussion in the previous sections illustrates that existing techniques have various
strengths and weaknesses depending on a variety of parameters. For example, the twist+

algorithm sometimes has trouble distinguishing the correct key length from its multiples,
while the twist++ algorithm sometimes has trouble distinguishing the correct key length
from its largest divisor. Thus, one might want to consider both of these key length tests
together along with several other tests, rather than just one of them. A neural network is
a natural candidate as a method to combine the existing techniques into one key length
finding structure such that the strengths of one technique could potentially compensate for
weaknesses in another. In this section, we first give some brief background on Artificial
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Neural Networks (ANNs) in 3.1 and then discuss the specifics of our ANN in 3.2, 3.3 and
3.4.

3.1. Background on Neural Networks. We first give a brief overview of Feedforward
Neural Networks (FFNN) and introduce some of the essential terminology for our work.
We direct the reader to [11] and [3] for further background on ANNs.

A Feedforward Neural Network is a machine learning framework inspired by biological
neural networks existing in animal brains. They are both the simplest structure and basis
of many machine learning architectures in the class of “deep learning” algorithms.

A FFNN is often viewed as a directed, acyclic graph with a number of layers. Each
vertex of the graph is called a neuron and is edge-connected to each neuron in the previous
and subsequent layer (other than neurons in the input layer). Figure 1 illustrates a FFNN
with input layer consisting of four neurons (this is the left most layer), two hidden layers
each with five neurons and an output layer consisting of three neurons.

x1

x2

x3

x4

h1
1

h1
2

h1
3

h1
4

h1
5

h2
1

h2
2

h2
3
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y1

y2

y3

FIGURE 1. Example of a Feedforward Neural Network

To each neuron n we associate two numbers: an, the activation of neuron n and a number
bn called a bias. To each edge we associate a number called a weight, which represents the
strength of the connection from one neuron to another. The activation of a neuron n, an is
a function of the activations ai associated to the neurons in the previous layer connected to
neuron n, the weights wi associated to those connections and the bias bn:

(3) an = g(w1a1 +w2a2 + . . .+wkak +bn)

where g is called an activation function and usually has range [0,1]. A number of acti-
vation functions are used in practice and we refer the reader to [3, Chapter 6] for further
details about these functions.

A FFNN which acts as a classifier can then be seen as a function f (x;W,B) with x an in-
put vector of “features” and parameterized by it’s weights W and biases B. For a given set of
weights and biases, when the FFNN is provided an input vector of features, all activations
are computed by the formula of Equation 3. The output of f is a vector y of activations of
the neurons in the output layer, where the entry yi is the probability that the FFNN believes
the input x should be assigned to category i. Training the FFNN is the process of deter-
mining the optimal weights and biases for doing the job of correctly classifying the inputs
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for a particular problem, by exposing the network to correctly labelled training examples
and evaluating the predictions of the network via a cost function. We refer the reader to
[3, Chapter 6]) for further details about training a neural network, including various cost
functions. In practice, determining the architecture and weights W (training) of a FFNN
is a process of experimenting with different features, activation functions, cost functions,
number of layers and number of neurons in each layer.

In this work, we train a FFNN to classify the key length of a Vigenère ciphertext given an
input vector of features calculated from the text. We discuss the exact features, activation
functions, cost functions, number of hidden layers and neurons used and tested in this work
in Section 3.3.

3.2. Data Generation for Model. The data for this project was obtained from the Project
Gutenberg website [4], an online library of free books. Approximately 5,500 English text
files were downloaded, a subset of which were then systematically parsed and cleaned
(removing numbers, punctuation and spaces). The cleaned text files were then split into
non-overlapping texts of length 200-500. To ensure uniformity of training data, each length
i, for 200 ≤ i ≤ 500, approximately 1,300 samples were generated. Each sample was
then encrypted with random keywords with lengths varying from 3 to 25 characters. The
keywords include English words and phrases as well as random strings of letters. Keywords
which are English words and phrases were randomly selected from the WordNet database
in the Natural Language Toolkit (NLTK) package in Python.

A selection of features based on the key length attacks described in Section 2 were then
computed for each sample and saved. We discuss the details of these features in Section
3.3. Our FFNN was trained on 332,605 samples and then tested on a test set (unseen by the
model during the training process) of size 58,695. To do these computations, we used the
Tensorflow and Keras libraries in Python.

3.3. Creating a Model. We considered a number of features for our ANN based on the
techniques discussed in Section 2. The complete list of features we considered in this work
are highlighted in Table 1.

Let us discuss our rationale for the consideration of these features. Naturally, the ex-
perimentally verified effectiveness of the twist+ and twist++ algorithms in finding the key
lengths under various conditions warranted inclusion of (6), (7) and (8) as features in the
network. However, as discussed earlier, when the key length exceeded N/12 these tests
could not be used. Thus, we included features (5) and (9) to give the network at least some
information when this occurred.

Initial investigations also showed that when repeated trigrams or quadgrams where present,
the Babbage-Kasiski test generally yielded useful information. In addition, the Babbage-
Kasiski method does not rely on comparing the ciphertext with statistical properties of the
English language and hence the inclusion of features (2), (10) and (11). Features (12)-
(14) were considered as other possible pieces of information related to the key length as
discussed in Section 2.4.

In order to investigate the relative impact of various subsets of the above features, a
standard architecture for the models was initially chosen. We refer to this as the base NN.
This architecture included an input layer of features coming from Table 1, two hidden layers
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(1) Length of ciphertext
(2) Has repeated sequences
(3) Index of coincidence of the ciphertext
(4) Index of coincidence of English (constant, which is 0.066)
(5) The quotient q from N = 12q+ r where N is the length of the ciphertext.
(6) The twist indices: T (M ,m) for 1 ≤ m ≤ 25
(7) The twist+ indices: T+(M ,m) for 2 ≤ i ≤ 25
(8) The twist++ indices: T++(M ,m) for 2 ≤ i ≤ 25
(9) The average index of coincidence for cosets m where 3 ≤ m ≤ 25

(10) The 5 most common distances that occurred between repeated sequences of length
3 or 4.

(11) The number of times each of the top 5 most common distances appeared.
(12) Hi-7
(13) ∆−7
(14) First order entropy

TABLE 1. Features considered

of 128 neurons each and an output layer of 23 neurons corresponding with key lengths of
3 to 25 characters. Note that, our base NN (and any NN under consideration here) makes
a prediction on key length based on whichever of the 23 neurons in the output layer scored
the highest probability from this model. We chose ReLu for the activation functions of
the hidden layers, and Softmax for the output layer. Our optimizer and loss functions
were chosen to be “Adam” (Adaptive Moment Estimation) and Categorical cross-entropy
respectively. These functions were chosen based on fairly standard choices (see [3, Chapter
6]) for categorization problems. Our training process involved 10 epochs (passes through
the training data) and validation test set sizes of 20% per epoch.

An iterative approach was used to engineer the features of our final neural network.
We initiated our investigation of the features by starting with our base NN and including
all features listed above in Table 1 in Model 1. Based on an analysis of the accuracy
of the model (i.e. the proportion of correct predictions) during each epoch of the training
process and the accuracy of the model on the unseen test set, we iterated through models by
systematically removing each feature (or in some cases, a pair of features) from our original
list. At each iteration, if the removal of a feature increased accuracy, further features were
removed in the following iteration. When the accuracy rate decreased, we returned those
features to the model and removed different features in the next iteration. The results of the
feature engineering process are recorded in Table 2. The numbers appearing in the “Input
features” column refers to the numbering of the features in Table 1.

The feature engineering process is further summarized in Table 3 below, which displays
the effect of leaving out each feature (in the order in which they were removed) on the ac-
curacy rate of the neural network. From Table 2 and Table 3 we see that the best performing
model was Model 9, with the following features removed from our original complete fea-
ture list: first order entropy, quotient, the Babbage-Kasiski features ((10) and (11) from
Table 1) and the average of the index of coincidences for m-cosets.
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Model Input features Number of Fea-
tures

NN Accuracy on
unseen test data

Model 1 All features 114 88.8%
Model 2 All features except

12 and 13
112 88%

Model 3 All features except
14

113 88.2%

Model 4 All features except 2
and 14

112 87.6%

Model 5 All features except
14, 3 and 4

111 87.4%

Model 6 All features except
14, 5

112 87.7%

Model 7 All features except
14, 5, 10 and 11

102 88.3%

Model 8 All features except
14, 5, 10, 11 and 9

79 88.7%

Model 9 All features except
14, 5, 9, 10, 11 and
6

54 88.9%

Model 10 All features except
14, 5, 9, 10, 11, 6
and 7

30 87.6%

Model 11 All features except
14, 5, 9, 10, 11, 6
and 8

30 87.2%

TABLE 2. Model features and accuracy rates

Subsequently, we proceeded to further engineer Model 9 by adding back into the model
some of the removed features in a different order to test whether different subsets of the
removed features could increase model performance. From our experiments, we concluded
that adding the average index of coincidences for the m-cosets back into the model in-
creased the accuracy rate to 89.2%. None of the other removed features were able to further
improve the performance of Model 9.

In the final step to create our model, we experimented with increasing the number of
epochs to 20 during the training process and including an additional layer with 128 neurons
in the network. This did not make a significant difference to the accuracy rate.

Our final model architecture is as follows: Input layer with 77 features, two hidden layers
each with 128 neurons and an ouput layer of 23 neurons. The activation functions are ReLu
for the hidden layers, and Softmax for the output layer. Our optimizer and loss functions
are “Adam” (Adaptive Moment Estimation) and Categorical cross-entropy respectively.
The final features included in the neural network are highlighted in Table 4.
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Model amended Feature removed Effect on accuracy rate after
removal

Model 1 Hi-7 and ∆−7 -0.8%
Model 2 First order entropy +0.2%
Model 3 Has repeated sequences -0.6%
Model 4 Index of coincidence of the ci-

phertext and English
-0.2%

Model 5 The quotient q from N = 12q+
r where N is the length of the
cipher text.

+0.3%

Model 6 10 & 11 (Babbage-Kasiski fea-
tures)

+0.6%

Model 7 The average index of coinci-
dence for cosets m where 3 ≤
m ≤ 25

+0.4%

Model 8 Twist indices: T (M ,m) for 1 ≤
m ≤ 25

+0.2%

Model 9 Twist+ indices: T+(M ,m) for
2 ≤ i ≤ 25

-1.3%

Model 10 Twist++ indices: T++(M ,m)
for 2 ≤ i ≤ 25

-0.4%

TABLE 3. Feature importance

(1) Length of ciphertext
(2) Has repeated sequences
(3) Index of coincidence of the ciphertext
(4) Index of coincidence of English (constant, which is 0.066)
(5) The twist+ indices: T+(M ,m) for 2 ≤ i ≤ 25
(6) The twist++ indices: T++(M ,m) for 2 ≤ i ≤ 25
(7) The average index of coincidence for cosets m where 3 ≤ m ≤ 25
(8) Hi-7
(9) ∆−7

TABLE 4. Final model features

3.4. Evaluation of Model. From Table 5 we see that our neural network is a vast im-
provement over the index of coincidence (using the formula from [2, Chapter 3]) and the
twist-based algorithms. In particular, it is able to maintain high accuracy when the ratio of
text length to key length is large.

From our original feature list in Table 4, (14) first order entropy, (5) the quotient q from
N = 12q+ r,(6) the twist indices: T (M ,m) for 1 ≤ m ≤ 25 and (10) and (11) the Babbage-
Kasiski features, did not appear to add any value to the neural network, as evidenced by the
slight increase in accuracy rate when those respective features were removed. It is perhaps
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Text-Length/Method IC Twist Index T+ T++ Neural Network
200-500 (Overall accuracy) 7.4% 22.4% 66.2% 63.3% 89.2%

200-299 6.8% 16.1% 47.3% 42.3% 75.1%
300-399 7.6% 20.3% 71.7% 65% 94.6%
400-500 7.7% 30.6% 79.4% 82.2% 97.9%

TABLE 5. Accuracy rates by key length finding method

somewhat surprising that the Babbage-Kasiski features were relatively unimportant given
that 99% of the samples contained at least one repeated trigram. One possible explanation
could be that to determine the key length from the Babbage-Kasiski data requires an extra
layer of intelligent processing to sift through the possible multiples of the key length given
in the data and then determine the actual key length from all the possible factors. The twist
indices also did not provide useful information in this experiment, which is not surprising
given it’s overall accuracy rate and the fact that the twist+ and twist++ indices already
implicitly include this information.

As a rough measure of feature importance, we observed that the removal of the twist+

data caused the biggest decrease in accuracy (-1.3%). We also experimented with removing
the twist++ data at that step of the engineering process instead, and this yielded a decrease
of -1.2% in accuracy. This suggests that both the twist+ and twist++ provide strong pre-
dictors of key length.

We now discuss the accuracy of the twist-based algorithms in relation to our neural
network, which is highlighted in Figure 2. In our investigations, the twist+ was slightly
more accurate than the twist++ for longer key lengths, while the twist++ was more accurate
for shorter key lengths. However, it should be noted that our domain of m-values for the
twist-based algorithms were restricted to the possible known values of the key length. Since
T (M ,m)≤ T (M ,λm) for λ ∈N (originally stated in [12], with a special case proved in [9]
along with experimental data verifying this result for the other cases), if a larger range of m-
values were considered then we would expect a decline in accuracy in the twist and twist+

algorithms, but relatively steady accuracy for the twist++. In general, the twist and twist+

algorithms frequently predict a multiple of the actual key length when making an incorrect
prediction, while the twist++ frequently predicts the largest common divisor of the actual
key length when making a false prediction. Thus, some of the accuracy ratings in Figure
3, Figure 4, and Figure 5 for the twist and twist+ algorithms could be overestimates for
longer key lengths. In addition, this might mean our neural network’s accuracy is slightly
overestimated for longer key lengths since the twist+ indices are a feature of this network.
We refer the reader to [9] for a further discussion about the effect of domain size on the
accuracy of the twist+ and twist++ algorithms and most common scenarios for incorrect
predictions for these algorithms.

For shorter texts 200 ≤ N ≤ 299 it can be observed from Figure 3 that the twist-based
algorithms perform very poorly for longer key lengths, but the neural network gives some
chance of success. This is due to the fact that each coset in the twist algorithm contains too
few letters, resulting in twist indices all being close to 100 (see [9] for further discussion).
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FIGURE 2. Accuracy rates by key length finding method

FIGURE 3. Accuracy rate by key length for 200 ≤ N ≤ 299



ANN Approach to Vigenère Key Length 13

FIGURE 4. Accuracy rate by key length for 300 ≤ N ≤ 399

FIGURE 5. Accuracy rate by key length for 400 ≤ N ≤ 499
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It is interesting to see that our ANN performs reasonably well under these conditions
despite the fact that many of the key features of this ANN individually perform quite poorly
under such conditions.

For longer text lengths 400 ≤ N ≤ 500 we see from Figure 5 that the twist+ and twist++

algorithms are both quite accurate and complement each other in terms of key length, with
twist++ performing better for shorter key lengths and twist+ for longer key lengths. The
neural network seems to be able to combine this information and is extraordinarily accurate
in these circumstances with an accuracy rate of 97.9%.

3.5. Summary. In this project we investigated how to combine both classical and recent
techniques into one key-length finding algorithm via a neural network. We demonstrated
that neural networks can be a powerful tool for predicting the key length of a Vigenère
encrypted text.

We observed that our original model with 114 features was a significant improvement in
performance from the twist-based algorithms, and overall, the feature engineering experi-
ment did not make a significant improvement to the success rate of the model, providing
some indication that appropriate features were originally chosen.

We were able to feature engineer the network to reduce the number of features in half
whilst slightly improving the accuracy of the network, to an overall success rate of 89.2%.
In particular, the neural network is much more accurate than existing methods in predicting
key length when the ratio of text length to key length is large. This project also revealed
that the recent twist-based algorithms, the twist+ and twist++ algorithms, provided some
of the strongest indicators of key length.
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