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ABSTRACT. In this article, we analyze and improve upon the twist-based algorithms in-
troduced by Barr–Simoson and Park–Kim–Cho–Yum for determining the key length of a
Vigenère cipher. We provide an in-depth discussion on how the domain of the twist index
affects the accuracy of these algorithms along with supporting experimental evidence. We
also introduce a new twist-based algorithm, the twist++ algorithm, and show this algorithm
is more accurate than the twist+ algorithm for a wide range of key lengths and text lengths.
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1. INTRODUCTION

The Vigenère cipher is a well-studied topic in classical cryptology and frequently serves
as the introductory example to polyalphabetic substitution ciphers in the literature. For this
cipher, one fixes a keyword that determines a sequence of shifts to be used for encrypting
individual letters, where the keyword repeats as needed to cover the length of the plaintext.
The development of this cipher involved several people, starting with Leon Battista Alberti
in the mid 1400s and leading up to Blaise de Vigenére’s Traicté des Chiffres in 1585 [6].
We refer the reader to Chapter 4 of [9] for a detailed description of the history of the
Vigenère cipher and Section 3.5 of [7] for a brief description. The Vigenére cipher has also
seen a wide range of applications in history and popular culture, including communications
between Confederacy officers during the American Civil War [4], [5] and the CIA’s Kryptos
sculpture [2].

The first step in cryptanalyzing the Vigenère cipher, or any polyalphabetic substitution
cipher, is finding the key length. The two most well-studied tools for this process are the
Babbage–Kasiski test [10] from the 1860s and the index of coincidence (IC) [12], which
was introduced by William Friedman in 1920. We refer the reader to [3, Chapter 2] for
background on these topics. While both of these tools can be useful for finding the key
length, in many cases, they run into accuracy and implementation issues. For instance,
if the Babbage–Kasiski test predicts a key length of m, then all divisors of m are also
reasonable conjectures for the key length. This test also won’t be helpful if very few (or
no) repeated tri-grams are found in the ciphertext. At the same time, the IC decreases in
accuracy as key length increases, which can be seen experimentally in Figure 2 of [8] and
Figure 3 of [11]. In addition, the key length estimate determined by the IC is dependent
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on your keyword containing k distinct letters. If many letters are repeated in the keyword,
then the IC will sometimes underestimate k. Through the 20th century, a few other methods
have been proposed for finding the key length (see [8] for one example), though all those
methods seem to only be accurate for particular ranges of key length and message length.
These challenges motivate the development of more robust key length attacks.

More recently, the twist algorithm [1] was introduced by Barr and Simoson in 2015 as
a new key length attack, which finds the potential key length m that maximizes a “twist
index.” This index measures the difference between the number of frequent and infrequent
letters that are conjectured to be encrypted with the same shift based on a predicted key
length of m; see Section 2 for precise details. An improved version of this algorithm called
the twist+ algorithm was then introduced by Park–Kim–Cho–Yum in 2020. An important
observation made by Park–Kim–Cho–Yum which led to the development of the twist+ al-
gorithm is that if you conjecture a key length of m for a fixed ciphertext, then the twist index
is nondecreasing as a function of multiples of m. This fact is only verified experimentally in
their paper, but plays a crucial role in highlighting a major weakness of the twist algorithm:
it is not clear how to distinguish the key length from its multiples with the twist algorithm.
This fact is essential for motivating both the twist+ algorithm and our own modification to
the twist algorithm. We give a proof that this property holds under certain conditions in
Lemma 2.5 to provide more conclusive evidence of the twist algorithm’s major flaw.

While Park–Kim–Cho–Yum provide experimental evidence (see Figure 3 of [11]) to
support the accuracy of the twist+ algorithm, there are still conditions where this algorithm
does not perform well. As noted in the conclusion of their paper, the twist+ algorithm is
less effective for short keys. In addition, the domain of possible key lengths to check can
play a significant role in the effectiveness of both the twist and twist+ algorithm, with a
larger domain of values resulting in a decrease in accuracy. We examine this subtlety in
detail in this paper, providing experimental evidence to back up our claims. In both types
of scenarios, the twist+ algorithm usually conjectures a multiple of the key length. To
alleviate this weakness, we introduce our own (simple) modification of the twist algorithm,
which we call the twist++ algorithm. We provide experimental evidence showing that the
twist++ algorithm outperforms the twist+ algorithm for a wide range of text lengths and
key lengths, while being far less susceptible to decreases in accuracy as the domain of
potential key lengths increases. We also provide an analysis of how the twist++ algorithm
behaves when it conjectures an incorrect key length. While this scenario is rare, it can
occur under particular conditions: when we have a relatively short text, and a relatively
small composite key length k, where k = 2m for some m ∈ N. Under such conditions, the
twist++ algorithm sometimes predicts a key length of m, and we carefully explain why this
is the case.

2. THE TWIST ALGORITHM AND THE TWIST+ ALGORITHM

In this section, we review the twist algorithm introduced by Barr–Simoson [1] and the
twist+ algorithm introduced by Park–Kim–Cho–Yum [11]. We also provide an updated
analysis of these algorithms. Suppose we are given a text M of length N, with text char-
acters labeled in order as x1, . . . ,xN . In all relevant cases, M will be a ciphertext that was
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encrypted using the Vigenère cipher. Under these conditions, let m be a conjectured key
length. We can partition our ciphertext into m cosets, {M j}m

j=1, where M j = {xi : i ≡ j
mod m}. For each coset, we calculate the relative frequencies of each letter and then order
these frequencies from smallest to largest. We let C j =< c1, j, c2, j, . . . , c26, j > represent the
vector of ordered relative frequencies for coset M j, called the sample signature for M j.

If the conjectured key length m is in fact the actual key length, k, then we should expect
each C j to approximate the behavior of ordered relative frequencies in the underlying lan-
guage (English for all of our cases). If m ̸= λk for λ∈N+, then each C j should more closely
approximate the frequencies of a random text, which are more uniform than in English. The
twist algorithm attempts to capture this distinction by analyzing the difference between the
relative frequencies of the 13 most frequent letters and the 13 least frequent letters in each
coset for a conjectured key length m. This motivates the twist of a sample signature:

♢C j =
26

∑
i=14

ci, j −
13

∑
i=1

ci, j.

If a coset behaves like a random text, then ♢C j should be small, while if a coset only
contains letters from the same alphabet, then we should expect each ♢C j to be relatively
large. We now can define the twist algorithm in terms of maximizing the sum of the twists
of sample signatures among possible key lengths, as introduced by Barr–Simoson [1].

Definition 2.1. Let M be a text of length N. The twist algorithm finds m ∈ N+ that
maximizes the twist index

T (M ,m) =
(100

m

m

∑
j=1

♢C j

)
.

Remark 2.2. In [1], Barr–Simoson defined the twist index by rounding T (M ,m) to the
nearest integer. We dropped the round function from the definition since the version of
T (M ,m) in Definition 2.1 gives a more precise answer for which m ∈ N+ maximizes the
twist index and it simplifies notation.

Remark 2.3. In both [1] and [11], there are no upper bound restrictions formally stated
for m in the definition of the twist algorithm, though only 1 ≤ m ≤ Q, with Q ∈ {9,10},
are shared in the examples and data in these papers. For our purposes, we will always
assume m∈ {1, . . . ,q}, where N = 12q+r for quotient q and remainder r. When examining
T (M ,m) for m > q, we always have T (M ,m) = 100 since under these conditions each
coset M j contains at most thirteen distinct letters, and so, ♢C j is equal to the sum of the
relative frequencies of all the letters in M j. This also highlights that the twist algorithm
is not useful when the ratio k

N is sufficiently large. For experimental purposes, we might
restrict m to smaller values, though we will always formally state what m-values are in the
domain of T (M ,m) for the given analysis.

Challenges with the twist algorithm occur when m = λk, for λ ∈ N+ and λ ≥ 2. First,
experimental evidence from [11] shows that T (M ,k)≤ T (M ,λk) for any k ∈ N+, and we
formally verify this result under certain conditions in Lemma 2.5. This is not surprising
since each coset M j relative to key length conjecture m = k gets partitioned into λ subsets,
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{M̃lm+ j}λ−1
l=0 to form the cosets relative to key length conjecture m = λk. Thus, if k is

the actual key length, then the letters in each coset M̃lm+ j should still mirror the relative
frequencies of the underlying language, and so, T (M ,λk) should still be a large value.
As a result of Lemma 2.5 (and the experimentally verified behavior for the general case),
we expect the twist algorithm to predict the largest possible multiple of the key length,
assuming nontrivial multiples of the key length are part of the domain of T (M ,m). While
this is still useful information, Park–Kim–Cho–Yum noticed a modification could be made
to increase accuracy for predicting the actual key length rather than a multiple. As noted in
their paper, “At m= λk for λ∈N+, the twist index T (M ,m) usually has its local maximum.
In addition, T (M ,m) increases rapidly at these points. Therefore, we propose to find the
key length by searching for the first point where the twist index increases rapidly.” To
formalize this idea, Park–Kim–Cho–Yum proposed that one should subtract the average of
the previous m−1 twist indices from T (M ,m) in order to more likely distinguish a global
maxima from a local maxima. More precisely, we have the following definition.

Definition 2.4. Let M be a text of length N. The twist+ algorithm finds m ∈ N+ that
maximizes the twist+ index

T+(M ,m) = T (M ,m)− 1
m−1

m−1

∑
µ=1

T (M ,µ),

where m ∈ S ⊆ {1, . . . ,q} and N = 12q+ r for quotient q and remainder r.

Park–Kim–Cho-Yum verified the effectiveness of the twist+ algorithm by analyzing
plaintexts of length N ∈ {200,300,400,500} which were encrypted with keys of length
k ∈ {2, . . . ,10}, and comparing accuracy between the index of coincidence, the twist algo-
rithm, and the twist+ algorithm; see Figure 3 from [11]. This data shows that the twist+

algorithm is a significant improvement over the index of coincidence and the twist algo-
rithm for the given parameters. However, it is unclear what the exact domain of m-values
were considered for this analysis, though it must have included m-values at least as large
as 10 since actual keys of length up to 10 were used for encryption. If the only m-values
considered were m ∈ {1, . . . ,10}, then this could lead to a different conclusions about the
accuracy of the twist+ algorithm than if a larger set of m-values was considered, especially
for the accuracy of larger key lengths. See Figure 1 and Figure 2 for experimental evi-
dence that support this claim. In addition, see Example 3.5 for a specific scenario where
the twist+ algorithm maximizes at index m = 16 (or possibly higher), but the actual key
length is k = 4.

As a function of m, it is somewhat unclear how to determine an appropriate domain for
T+(M ,m). The largest domain one should consider is m ∈ {1, . . . ,q}, though a specific
subset of these values could be used, as designated in Definition 2.4. Smaller upper bounds
might be more reasonable for experimental purposes, though this probably depends on
what one considers “fair” test parameters. If we want to build a test where it is assumed
that a key length k can only be k ∈ {1, . . . ,Q}, for some fixed Q known ahead of time, then
there is no need to consider index values larger then Q. However, if it is unclear what the
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largest key length value might be, then it could make sense to include m-values as large as
experimentally feasible, up to q.

To end this section, we provide a proof that T (M ,m) ≤ T (M ,λm) under specific con-
ditions, along with some remarks on the general case. This behavior of T (M ,m) was a
crucial insight that motivated modifying the twist algorithm and was only verified experi-
mental in [11].

Lemma 2.5. Let M be a text, and m,λ ∈ N+. If λ divides the size of each m-coset, then
T (M ,m)≤ T (M ,λm).

Proof. Fix m,λ ∈N+. Then m gives a partition of M into the set of m-cosets {M j}m
j=1 with

C j denoting the corresponding sample signature for M j. Likewise, λm gives a partition of

M into the set of λm-cosets {M̃ j}λm
j=1 with C̃ j denoting the corresponding sample signature

of M̃ j. Note that each m-coset M j is a disjoint union of λm-cosets. In particular, for an
m-coset M j we can write:

(1) M j = M̃ j ⊔M̃m+ j ⊔ . . .⊔M̃(λ−1)m+ j

Thus, to prove T (M ,m)≤ T (M ,λm), it suffices to show that for all j = 1, . . . ,m, we have

(2) ♢C j ≤
1
λ

(λ−1

∑
l=0

♢C̃lm+ j
)

Before proceeding, we set up some notation and rephrase Inequality 2. Let C := C j for
some fixed j and let C̃l for 0≤ l ≤ λ−1 be the sample signatures corresponding to the (sub)-
coset M̃lm+ j from the right-hand side of Equation 1. Let |M j|= N and C =< c1, . . . ,c26 >
be the vector of ordered relative frequencies to coset M j.

Define v :=< Nc1, . . . ,Nc26 >=< f1, . . . , f26 > i.e, v denotes the ordered vector of raw
frequencies corresponding to coset C. Let vL =< f1, . . . , f13 > and vR =< f14, . . . , f26 >.
Similarly, let ṽl =< f̃ l

1, . . . , f̃ l
26 > denote the ordered vector of raw frequencies correspond-

ing to (sub)-coset M̃lm+ j, and we use ṽl
L and ṽl

R to denote the 13-dimensional vectors cor-
responding to the first 13 entries of ṽl and the second 13 entries of ṽl , respectively. Note

that, ♢C = 1
N

( 26

∑
i=14

fi −
13

∑
i=1

fi

)
.

Since we are assuming that λ divides the size of each m-coset, we have that λ divides N.
Then since each |C̃l|= N

λ
, we have(

λ−1

∑
k=0

♢C̃km+ j

)
=

λ

N

[
λ−1

∑
k=0

( 26

∑
i=14

f̃ l
i −

13

∑
i=1

f̃ l
i

)]
.

Thus, we can can rephrase Inequality 2 as

(3)
26

∑
i=14

fi −
13

∑
i=1

fi ≤
λ−1

∑
l=0

( 26

∑
i=14

f̃ l
i −

13

∑
i=1

f̃ l
i

)
.
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In order to prove Inequality 3 we need to make a connection between the raw frequencies
fi for coset M j and the raw frequencies f̃ l

i of each (sub)-coset M̃lm+ j, for l = 0, . . . ,λ−
1. A key observation is that the ordered raw frequency vectors ṽl can be constructed as
follows: given v =< f1, . . . , f26 >, let f al ph

i designate the letter that is counted by fi. Then

define f l
i as the number of occurrences of letter f al ph

i in M̃lm+ j. Then to construct ṽl =<

f̃ l
1, . . . , f̃ l

26 >, we sort the entries of vector < f l
1, . . . , f l

26 > from smallest to largest. Note
that, by construction fi = ∑

λ−1
l=0 f l

i .
We now claim that ∑

26
i=14 fi ≤∑

λ−1
l=0 ∑

26
i=14 f̃ l

i Since ∑
26
i=14 fi =∑

λ−1
l=0 ∑

26
i=14 f l

i , we just need
to show ∑

26
i=14 f l

i ≤ ∑
26
i=14 f̃ l

i for each l = 0, . . . ,λ−1. For this, we can compare the vectors
vl

R and ṽl
R. Note that, ∑

26
i=14 f l

i is the sum of the entries of vl
R and ∑

26
i=14 f̃ l

i is the sum of
the entries of ṽl

R. If vl
R is a permutation of ṽl

R, then ∑
26
i=14 f l

i = ∑
26
i=14 f̃ l

i . If vl
R is not a

permutation of ṽl
R, then some values in vl

L are larger than some values in vl
R. Thus, when

we sort vl to put its entries in increasing order to create ṽl , we could only increase the
sum of the entries in the right-half of these respective vectors, i.e., ∑

26
i=14 f l

i < ∑
26
i=14 f̃ l

i .
This proves the claim and a similar process shows that ∑

13
i=1 fi ≥ ∑

λ−1
l=0 ∑

13
i=1 f̃ l

i , which then
implies Inequality 3, giving the desired result. □

Remark 2.6. A general proof of this fact could possibly proceed in the same manner, until
we rely on our assumption that λ divides N. If λ does not divide N, then suppose N =
λα+ r, where α = ⌊N/λ⌋ and 1 ≤ r < λ. We would want to show Inequality 2 holds under
these conditions. In this case, the λ-cosets can be partitioned into two sets: {M̃ j}r−1

j=0,

each with α+1 elements and {M̃ j}λ−1
j=r , each with α elements. However, the fact that the

number of elements in these cosets varies creates challenges in moving to some version of
Inequality 3. That being said, we experimentally verified that T (M ,m) ≤ T (M ,λm) still
holds under this scenario for approximately 100,000 cases.

3. THE TWIST++ ALGORITHM

While the twist+ algorithm is frequently an effective tool for determining the key length
of a Vigenère cipher, there are conditions where this algorithm does not perform well.
Accuracy issues for the twist+ algorithm can occur when we have short key lengths. Ex-
perimentally, the top left graph in Figure 3 of [11] shows lower success rates for the twist+

algorithm when k ∈ {2,3,4,5} and N = 200. In addition, as mentioned in Section 2, in-
creasing the size of your domain of m-values for T+(M ,m) can decrease the accuracy of
the twist+ algorithm. Since in many scenarios it will be unclear when you can restrict
to a small set of m-values, this is another concern. In both of these scenarios, the twist+

algorithm frequently runs into issues similar to the twist algorithm had with predicting a
nontrivial multiple of the actual key length.

This raises the question: Can we further modify the twist algorithm to alleviate this is-
sue? Here, we propose one adjustment to the twist algorithm where we search for the value
where the twist index increases rapidly and then decreases rapidly relative to a local neigh-
borhood rather than compare the current twist index to the average of all of the previous
twist indices.
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Definition 3.1. Let M be a text of length N. The twist++ algorithm finds m ∈ N+ that
maximizes the twist++ index

T++(M ,m) = T (M ,m)− 1
2

(
T (M ,m−1)+T (M ,m+1)

)
,

where m ∈ S ⊆ {2, . . . ,q} and N = 12q+ r for quotient q and remainder r.

Collectively, we refer to the twist algorithm, twist+ algorithm, and twist++ algorithm as
the twist-based algorithms.

To directly compare the twist++ algorithm to the twist+ algorithm we replicated the pa-
rameters of the data set for which the twist+ algorithm was analyzed against in [11]. The
data set included 100 texts of lengths N ∈ {200,300,400,500} each encrypted with 40
keys for the lengths 2 ≤ k ≤ 10. Figure 1 demonstrates the performance of the twist+ algo-
rithm versus the twist++ algorithm when we consider 2 ≤ m ≤ 15. The twist++ algorithm
performs significantly better overall, especially when N ∈ {200,300,400} for 2 ≤ k ≤ 7.

Figure 2 shows that the difference in accuracy increases between the twist+ algorithm
and twist++ algorithm when the values 2 ≤ m ≤ 20 are considered. As discussed in Section
2, the twist+ algorithm is more likely to predict a multiple of the key length as the domain of
m-values increases, which is verified experimentally here. However, The twist++ algorithm
still maintains a high level of accuracy under these parameters.

For 2≤m≤ 20, the only parameters where the twist+ algorithm outperforms the twist++

algorithm is when N = 200 and k ∈ {8,9,10}. Under these conditions, the twist++ algo-
rithm frequently predicts the largest nontrivial divisor of the key length. For instance, out
of 4000 texts of length N = 200 encrypted with a key of length k = 8, the twist++ algo-
rithm incorrectly predicted the key length 721 times. Out of these 721 texts, the twist++

algorithm predicted a key length of m = 4 (i.e., the largest nontrivial divisor of k = 8), ap-
proximately 91.68% of the time. See Table 3 for data on the cases where k = 8,9,10. It is
interesting to see that that when these twist-based algorithms fail, their predictions usually
go in different directions: the twist+ algorithm frequently predicts a nontrivial multiple of
the actual key length, while the twist++ algorithm frequently predicts the largest nontrivial
divisor of the actual key length.

For the twist++ algorithm, let us discuss why we expect incorrect predictions to fre-
quently be the largest nontrivial divisor of the actual key length k. First, let us consider
how T++(M ,m) behaves for m < k. If m is a divisor of k, then the k-cosets determined by
the actual key can be partitioned into groups of k

m sets, each making up one of the m-cosets
determined by the predicted key length of m. When m is large as possible, we are minimiz-
ing the number of (different) k-cosets we are combining into an m-coset. This should still
result in a relatively large T (M ,m)-value since we have only combined a few alphabets to-
gether. At the same time, if m is the largest divisor of k, then m+1 will not be a divisor of
k, and m−1 will sometimes not be a divisor of k; see Remark 3.3. As a result, T (M ,m+1)
should usually be much smaller than T (M ,m) since the (m+1)-cosets will frequently be-
have closer to a random sample rather than combining samples from a few alphabets. The
same behavior should be expected for T (M ,m− 1) when m− 1 does not divide k. Thus,
T++(M ,m) should be relatively large at such m-values. Now suppose m does not divide
k, then the m-cosets should behave more like random samples, and so, T (M ,m) should be
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relatively small, and likewise T++(M ,m) will too. Thus, for m < k, then we should expect
T++(M ,m) to likely have a global maxima at the largest divisor of k. See Example 3.2 for
a short example analyzing this coset behavior.

Example 3.2. Consider the following part of a cipher text with k = 6.

DYECYLYLWCAQGGNGHBAEZUHQ

We color the letters with the same equivalence class mod 6, with the colors blue, black,
cyan, red, green, and purple, respectively.

D Y E C Y L Y L W C A Q G G N G H B A E Z U H Q

When m = 3 we see that the first coset C3
1 only contains letters from two alphabets (letters

in blue and red), whereas when m = 2 or m = 4, the first cosets C2
1 and C4

1 both contain
letters coming from three alphabets (letters in blue, green and cyan). Furthermore, if we
consider m ∈ N such that gcd(m,k) = 1, then any m-coset Cm

i will contain letters from a
wide range of alphabets, and given a long enough message, Cm

i will contain letters from
each of the k-alphabets. For instance, if we consider C5

1 for this example, then this coset
contains letters from all five alphabets (all colors represented).

Now, we will consider how T++(M ,m) behaves for m > k. First, as m gets sufficiently
large, we quickly see less variation in T (M ,m)-values, and so, T++(M ,m)-values will be
relatively small. Thus, we will rarely expect the twist++ algorithm to predict an m-value
significantly larger than k, which will frequently make (nontrivial) multiples of k unlikely
candidates to maximize T++(M ,m). At the same time, if m is not a multiple of k, then
the m-cosets behave closer to random samples and we are unlikely to have large values for
both T (M ,m) and T++(M ,m), as discussed in the previous paragraph. Thus, we should
expect T++(M ,m)-values to usually be relatively small, whenever m > k.

Based on the previous two paragraphs, we can see that if m ̸= k, then T++(M ,m) should
frequently have a global maxima when m is the largest nontrivial divisor of k. As a result,
if the twist++ algorithm makes an incorrect prediction, then it should frequently predict the
largest nontrivial divisor of the actual key length. This also implies that we rarely expect
the twist++ algorithm to make incorrect predictions for prime key lengths.

Remark 3.3. Suppose m is the largest nontrivial divisor of k ∈N with k > 1 and k composite.
We claim that if m− 1 is composite, then m− 1 can not divide k. Since m is the largest
nontrivial divisor of k, we must have k = m · p, for some prime p (where p is the smallest
prime in the prime factorization of k). Suppose m−1 divides k. Since gcd(m−1,m) = 1
and m− 1 divides m · p, we have that m− 1 divides p. Since p is prime, we can conclude
that m− 1 = p, proving the claim. Thus, when we say “m− 1 will sometimes not be a
divisor of k” we know this will occur at least whenever m−1 is composite.

Remark 3.4. In the discussion above, we are intentionally making “as m gets sufficiently
large” imprecise, though this condition is dependent on both m and N since we need N

m to
become sufficiently small for T (M ,m)-values to stay within a sufficiently small neighbor-
hood of 100.
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FIGURE 1. A comparison of the twist+ algorithm and the twist++ algo-
rithm with respect to 2 ≤m ≤ 15. The x-axis represents possible key lengths
and the y-axis represents the success rate in percentage. Each graph is rela-
tive to a fixed message length N designated at the top of the graph.

FIGURE 2. A comparison of the twist+ algorithm and the twist++ algo-
rithm with respect to 2 ≤m ≤ 20. The x-axis represents possible key lengths
and the y-axis represents the success rate in percentage. Each graph is rela-
tive to a fixed message length N designated at the top of the graph.
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Number of texts N k Incorrect predictions Predicted largest divisor Percentage
4000 200 8 721 661 91.68%
4000 200 9 575 345 60%
4000 200 10 1896 1313 69.25%
TABLE 1. Under parameters where the twist++ algorithm performs weak-
est, it usually predicts the largest (nontrivial) divisor of the actual key length.
Here, k stands for actual key length, N stands for text length, and the per-
centage column represents the percentage of incorrect predictions that were
largest (nontrivial) divisor of the actual key length.

We now provide two examples comparing the twist-based algorithms to help give a
deeper understanding of their differences. Our first example illustrates what can happen
when the twist+ algorithm fails and predicts a multiple of the key length, while the twist++

algorithm succeeds in predicting the actual key length. We then consider an example where
the twist+ algorithm succeeds, but the twist++ algorithm fails by predicting the largest non-
trivial divisor of the key length.

Example 3.5. For our first example, we will be using part of the prologue of Romeo and
Juliet as our plaintext:
“Two households, both alike in dignity,
(In fair Verona, where we lay our scene),
From ancient grudge break to new mutiny,
Where civil blood makes civil hands unclean.
From forth the fatal loins of these two foes
A pair of star-cross’d lovers take their life;
Whose misadventur’d piteous overthrows
Doth with their death bury their parents’ strife.
The fearful passage of their death-mark’d love
And the continuance of their parents’ rage”

Once punctuation and spacing are removed, the resulting text has N = 350 letters. We
then encrypted this message with the keyword ‘will’, i.e., key length k = 4. This gave us
the following ciphertext M :
PEZSK CDPDW WOOJZ EDIWT GMTYZ QRYEB JTJNL TNDPC KVLHD MCPSM
WLUWF COKPY ANCZI IYNEM YECZF OCMMC AIVEK VPHIC ETJGH SAZPN
EDTWX TZZZU LVAAN TRQWS WVODQ VNWAI YQNWX QKZES PPPQW
BLWHW TYOWQ EDMDP PEZQK MDLLI TCKND EWZNC KADOH WGPNA
ELGME SAQCW ENPHD WDPIQ DLZDP YPCCO LQEPK CDZRM CEDZZ HOLZE
DETED BSPEZ OPWBS MQZJE DMTCL ICPJB DDPZT QABSP BMLCB CWAWA
DLCMZ QPPPT NLPLP PXLNS OWKDPL JLESA KZYPQ YFWVN PKNES AQCAW
ZPYPA CLCM

We then analyzed how well different key length attacks performed for this ciphertext.
First, IC(M )≈ 0.0503, which results in the IC predicting a key length of m ≈ 2.265. The
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m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
T (M ,m) 50 59 58 77 63 67 64 83 73 81 78 91 82 87 89 99 90

T+(M ,m) 9 3 21 2 5 2 20 7 15 10 22 11 16 17 26 15
T++(M ,m) 5 -11 17 -9 3 -11 15 -9 6 -8 11 -7 1 -4 10 -8

TABLE 2. Twist indices for Example 3.5. Values are rounded to the nearest integer.

Babbage–Kasiski test found distances of 16, 32, 56, 87, 104, 124, 128, 140, 156, 160, 220,
224, and 247 between repeated trigrams. The greatest common divisor of a majority of
these distances is 16. Thus, this test predicts a key length that is a factor of 16. For the
twist-based algorithms, we considered m-values of 1 ≤ m ≤ 25 to make sure we included
indices (potential key lengths to check) that are the first couple of multiples of the actual
key length k = 4. For this example, the twist+ algorithm predicts a key length of 16. Thus,
all of these tests predict a divisor of k, a multiple of k, or a set of possible key length
values that includes k along with factors and divisors of k. However, the twist++ algorithm
predicts a key length of 4 for this example, making this test the only one that correctly
predicts the key length as the only possible value.

We provide Table 3.5 and Figure 3 to help understand how these twist-based algorithms
behave for this example. For these visuals, we only consider indices 1 ≤ m ≤ 17 for for-
matting purposes. For m ≥ 18, T (M ,m) quickly converges to 100. This is expected since
once m is sufficiently large, each coset contains very few letters; see Remark 2.3. In fact,
for any m ≥ 23, T (M ,m) = 100 for this text. As a result, we expect twist++ indices to
become sufficiently small for large m-values, making it extremely unlikely that the twist++

algorithm will accidentally predict a large multiple of the actual key length, which was a
significant issue for the twist algorithm by Lemma 2.5. Here, the local maxima that oc-
curs at m = k(= 4) for T (M ,m) is also the point where T (M ,m) has the largest left-hand
and right-hand derivatives, i.e., when T++(M ,m) index is maximized, which one can vi-
sually verify in Figure 3. Based on experimental evidence, this phenomenon frequently
occurs for short key lengths, which motivated the definition of the twist++ index. While
it is more difficult to visualize the behavior of the twist+ algorithm based on the graph of
the twist indices, we do see that the graph of T+(M ,m) has local maxima at m = λk with
λ ∈ {1,2,3,4} and a global maximum at m = 16(= 4k), for the given domain. Notice that
for T+(M ,m), the third highest local minima occurs at m = 4 (the actual key length value)
and the second highest local minima occurs at m = 12. Thus, as we vary our domain of
m-values, the twist+ algorithm could make a variety of predictions about key lengths and
would only predict correctly if m ≤ 11 are considered. This emphasizes the importance of
clearly stating your domain of m-values for twist-based algorithms.

Example 3.6. For our second example we will be using part of the poem Overlooked by
Emily Pauline Johnson as our plaintext:
“Has passed me by.
I called, ”O stay thy flight,” but all unheard
My lonely cry:
O! Love, my tired heart had need of thee!
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FIGURE 3. A graphical depiction of the results for the twist-based algo-
rithms for Example 3.5. For T+(M ,m) and T++(M ,m), we have marked
the absolute maximums for these graphs.

Is thy sweet kiss withheld alone from me?
Sleep, sister-twin of Peace, my waking eyes
So weary grow!
O! Love, thou wanderer from Paradise,
Dost t”

Once punctuation and spacing are removed, the resulting text has N = 200 letters. We
encrypted this message with the keyword “firebird”, i.e., key length k = 8. This gave us the
following ciphertext M :

MIJTB AJHIU VFZQT DQTVH PAKDD BYCGT ZJMBS YUICO ZVYIB ZUPDT
FRFTP FWGFP PDVPD BZVFL YHFZK LBLEH JLFJU PVHNA KLZAN HJBBM
TANLY PYIML ROTVV JSWDP JACIF XJLXB VVUEZ QTNGI BKVPD EROJV
XHDMJ WPEVD WGXVP EFOTD VXIWL ZFVUI SMIIW WDTBZ RGNAV HPAKW

For this text, IC(M ) ≈ 0.0420 which results in the IC predicting a key length of m ≈
6.7997. The Babbage–Kasiski test found distances of 80, 122, and 176. The gcd(80,122,176)=
2, while the gcd(80,176) = 16. So the Babbage–Kasiski test directs one towards a divisor
of 16, though with minimal evidence. Finally, the twist+ algorithm predicts a key length
of 8, while twist++ algorithm predicts a key length of 4 (the largest nontrivial divisor of
k = 8). As discussed earlier in this section, this behavior is expected for the twist++ algo-
rithm when it makes an incorrect prediction for such N and k.
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m 1 2 3 4 5 6 7 8
T (M ,m) 40 57 52.0277 78 58 71.925 65.975 90

T+(M ,m) 17 3.528 28.324 1.243 14.920 6.483 29.582
T++(M ,m) 10.986 -15.472 22.986 -16.963 9.938 -14.988 15.006

m 9 10 11 12 13 14 15 16
T (M ,m) 84.014 88 93.993 100 99.0385 100 99.048 100

T+(M ,m) 19.898 21.673 25.498 29.188 25.794 24.771 22.050 21.532
T++(M ,m) -4.986 -1.003 -0.007 3.484 -0.962 0.957 -0.952 0.476

TABLE 3. Twist indices for Example 3.6. Values are rounded to three deci-
mal places.
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FIGURE 4. A graphical depiction of the results for the Twist-based algo-
rithms for Example 3.6. For T+(M ,m) and T++(M ,m), we have marked
the absolute maximums for these graphs.

We provide Table 3 and Figure 4 to assist with this example. Here, m-values larger than
the ones shared only result in small variations of T (M ,m)-values and do not maximize
T+(M ,m) nor T++(M ,m). As discussed earlier, we can see that the twist++ algorithm is
very unlikely to predict a multiple of k since there is so little variation in T (M ,m) when
m > k under such parameters. We can also see that the second largest T++(M ,m)-value
occurs at m = 8, the actual key length.



14 C. Millichap, Y. Yau, A. Pate, and M. Carns

4. FUNDING DETAILS

This work was financially supported by the Furman University Department of Mathe-
matics via the Summer Mathematics Undergraduate Research Fellowships.

5. BIOGRAPHICAL NOTE

Christian Millichap is an Associate Professor of Mathematics at Furman University in
Greenville, SC. His research interests are in geometric topology and knot theory. He has
also enjoyed teaching a variety of classes in cryptology for high school students and under-
graduates.

Yeeka Yau is an Assistant Professor of Mathematics at the University of North Carolina
Asheville. His research interests are in Coxeter groups, combinatorial and geometric group
theory, cryptology and machine learning.

Alyssa Pate is a student at Furman University. She is studying Applied Mathematics and
Data Analytics with hopes of going into the Data Analytics field. With friend and fellow
collaborator, Morgan Carns, she participated in the 2023 Kryptos Competition. She enjoys
learning more about Cryptology and hopes to continue to discover more in the future.

Morgan Carns is a student at Furman University getting her Bachelor of Science in Ap-
plied Mathematics with a Data Analytics Minor. Her cryptology experience started with the
Kryptos competition held by Central Washington University where she placed as an ama-
teur codebreaker for solving one of three challenges. She then continued her exploration in
cryptology by completing summer research through the Furman Mathematics Department
in the summer of 2023. She hopes to continue her cryptology experience throughout the
rest of her life.

6. DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly available in Zenodo at
https://doi.org/10.5281/zenodo.8373071.

REFERENCES

[1] Thomas H. Barr and Andrew J. Simoson, Twisting the keyword length from a vigenère cipher, Cryptolo-
gia 39 (2015), no. 4, 335–341, https://doi.org/10.1080/01611194.2014.988365.

[2] Craig Bauer, Gregory Link, and Dante Molle, James sanborn’s kryptos and the matrix encryption con-
jecture, Cryptologia 40 (2016), no. 6, 541–552, https://doi.org/10.1080/01611194.2016.1141556.

[3] Craig P. Bauer, Secret history—the story of cryptology, second ed., Chapman & Hall/CRC Cryptography
and Network Security, CRC Press, Boca Raton, FL, 2021.

[4] Kent D. Boklan, How i broke the confederate code (137 years too late), Cryptologia 30 (2006), no. 4,
340–345, https://doi.org/10.1080/01611190600826729.

[5] , How i deciphered a robert e. lee letter—and a note on the power of context in short polyalpha-
betic ciphers, Cryptologia 40 (2016), no. 5, 406–410, https://doi.org/10.1080/01611194.2016.1170424.
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