A PAIR OF GARSIDE SHADOWS

PIOTR PRZYTYCKI ${ }^{\dagger}$ AND YEEKA YAU ${ }^{\dagger}$

Abstract

We prove that the smallest elements of Shi parts and cone type parts exist and form Garside shadows. The latter resolves a conjecture of Parkinson and the second author as well as a conjecture of Hohlweg, Nadeau and Williams.

1. Introduction

A Coxeter group W is a group generated by a finite set S subject only to relations $s^{2}=1$ for $s \in S$ and $(s t)^{m_{s t}}=1$ for $s \neq t \in S$, where $m_{s t}=m_{t s} \in\{2,3, \ldots, \infty\}$. Here the convention is that $m_{s t}=\infty$ means that we do not impose a relation between s and t. By X^{1} we denote the Cayley graph of W, that is, the graph with vertex set $X^{0}=W$ and with edges (of length 1) joining each $g \in W$ with $g s$, for $s \in S$. For $g \in W$, let $\ell(g)$ denote the word length of g, that is, the distance in X^{1} from g to id. We consider the action of W on $X^{0}=W$ by left multiplication. This induces an action of W on X^{1}.

For $r \in W$ a conjugate of an element of S, the wall \mathcal{W}_{r} of r is the fixed point set of r in X^{1}. We call r the reflection in \mathcal{W}_{r} (for fixed \mathcal{W}_{r} such r is unique). Each wall \mathcal{W} separates X^{1} into two components, called half-spaces, and a geodesic edgepath in X^{1} intersects \mathcal{W} at most once Ron09, Lem 2.5]. Consequently, the distance in X^{1} between $g, h \in W$ is the number of walls separating g and h.

We consider the partial order \preceq on W (called the 'weak order' in algebraic combinatorics), where $p \preceq g$ if p lies on a geodesic in X^{1} from id to g. Equivalently, there is no wall separating p from both id and g.
Shi parts. Let \mathcal{E} be the set of walls \mathcal{W} such that there is no wall separating \mathcal{W} from id (these walls correspond to so-called 'elementary roots'). The components of $X^{1} \backslash \bigcup \mathcal{E}$ are Shi components. For a Shi component Y, we call $P=Y \cap X^{0}$ the corresponding Shi part.

Our first result is the following.
Theorem 1.1. Let P be a Shi part. Then P has a smallest element with respect to \preceq.

Theorem 1.1 was proved independently in a more general form by Dyer, Fishel, Hohlweg and Mark in (DFHM23, Theorem 1.1(1)]). Here we give a short proof following the lines of the proof of a related result of the first author and Osajda OP22, Thm 2.1].
In |Shi87], Shi proved Theorem 1.1 for affine W. The family \mathcal{E}, which is finite by BH93], has been extensively studied ever since and has become an important object in algebraic combinatorics, geometric group theory and representation theory. See for example see the survey article (Fis20].

[^0]By [BH93], Shi parts are in correspondence with the states of an automaton recognising the language of reduced words of the Coxeter group. This partition of a Coxeter group is thus one of the primary examples of 'regular' partitions, see PY22].
For $g \in W$, let $m(g)$ be the smallest element in the Shi part containing g, guaranteed by Theorem 1.1. Let $M \subset W$ be the set of elements of the form $m(g)$ for $g \in W$.

The join of $g, g^{\prime} \in W$ is the smallest element h (if it exists) satisfying $g \preceq h$ and $g^{\prime} \preceq h$. A subset $B \subseteq W$ is a Garside shadow if it contains S, contains $g^{-1} h$ for every $h \in B$ and $g \preceq h$, and contains the join, if it exists, of every $g, g^{\prime} \in B$.

Theorem 1.2. M is a Garside shadow.
Theorem 1.2 was also obtained in DFHM23, Thm 1.1(2)], where the authors showed that M is the set of so-called 'low elements' introduced in [DH16]. We give an alternative proof using 'bipodality', a notion introduced in (DH16] and rediscovered in OP22.
Cone type parts. For each $g \in W$, let $T(g)=\{h \in W \mid \ell(g h)=\ell(g)+\ell(h)\}$. For $T \subset W$, the cone type part $Q(T) \subset W$ is the set of all g^{-1} with $T(g)=T$. In other words, $Q(T)$ consists of g such that T is the set of vertices on geodesic edge-paths starting at g and passing through id that appear after id, including id.

We obtain a new proof of the following.
Theorem 1.3. PY22, Thm 1] Let Q be a cone type part. Then Q has a smallest element with respect to \preceq.

For $g \in W$, let $\mu(g)$ be the smallest element in the cone type part containing g. Let $\Gamma \subset W$ be the set of elements of form $\mu(g)$ for $g \in W$ These elements are called the gates of the cone type partition in PY22.

We also obtain the following new result, confirming in part PY22, Conj 1].
Theorem 1.4. For any $g, g^{\prime} \in \Gamma$, if the join of g and g^{\prime} exists, then it belongs to Γ.
By $\overline{\mathrm{PY} 22}$, Prop 4.27(i)], this implies that Γ is a Garside shadow. Furthermore, Γ is the set of states of a the minimal automaton (in terms of the number of states) recognising the language of reduced words of a Coxeter group. This verifies HNW16, Conj 1].

The paper is organised as follows. In Section 2 we discuss 'bipodality' and use it to prove Theorem 1.1 and Theorem 1.2. In Section 3 we focus on the cone type parts and give the proofs of Theorem 1.3 and Theorem 1.4 .
Acknowledgements. We thank Christophe Hohlweg and Damian Osajda for discussions and feedback.

2. Shi Parts

The following property was called bipodality in DH16. It was rediscovered in OP22.
Definition 2.1. Let $r, q \in W$ be reflections. Distinct walls $\mathcal{W}_{r}, \mathcal{W}_{q}$ intersect, if \mathcal{W}_{r} is not contained in a half-space for \mathcal{W}_{q} (this relation is symmetric). Equivalently, $\langle r, q\rangle$ is a finite group. We say that such r, q are sharp-angled, if r and q do not commute and $\{r, q\}$ is conjugate into S. In particular, there is a component of
$X^{1} \backslash\left(\mathcal{W}_{r} \cup \mathcal{W}_{q}\right)$ whose intersection F with X^{0} is a fundamental domain for the action of $\langle r, q\rangle$ on X^{0}. We call such F a geometric fundamental domain for $\langle r, q\rangle$.
Lemma 2.2 ([OP22, Lem 3.2], special case of [DH16, Thm 4.18]). Suppose that reflections $r, q \in \bar{W}$ are sharp-angled, and that $g \in W$ lies in a geometric fundamental domain for $\langle r, q\rangle$. Assume that there is a wall \mathcal{U} separating g from \mathcal{W}_{r} or from \mathcal{W}_{q}. Let \mathcal{W}^{\prime} be a wall distinct from $\mathcal{W}_{r}, \mathcal{W}_{q}$ that is the translate of \mathcal{W}_{r} or \mathcal{W}_{q} under an element of $\langle r, q\rangle$. Then there is a wall \mathcal{U}^{\prime} separating g from \mathcal{W}^{\prime}.

Figure 1. Lemma 2.2 for the case $m_{r q}=4$
The following proof is surprisingly the same as that for a different result OP22, Thm 2.1].
Proof of Theorem 1.1. Let $P=Y \cap X^{0}$, where Y is a Shi component. It suffices to show that for each $p_{0}, p_{n} \in P$ there is $p \in P$ satisfying $p_{0} \succeq p \preceq p_{n}$. Let $\left(p_{0}, p_{1}, \ldots, p_{n}\right)$ be the vertices of a geodesic edge-path π in X^{1} from p_{0} to p_{n}, which lies in Y. Let $L=\max _{i=0}^{n} \ell\left(p_{i}\right)$.

We will now modify π and replace it by another embedded edge-path from p_{0} to p_{n} with vertices in P, so that there is no p_{i} with $p_{i-1} \prec p_{i} \succ p_{i+1}$. Then we will be able to choose p to be the smallest p_{i} with respect to \preceq.
If $p_{i-1} \prec p_{i} \succ p_{i+1}$, then let $\mathcal{W}_{r}, \mathcal{W}_{q}$ be the (intersecting) walls separating p_{i} from p_{i-1}, p_{i+1}, respectively. Moreover, if r and q do not commute, then r, q are sharpangled, with id in a geometric fundamental domain for $\langle r, q\rangle$. We claim that all the elements of the residue $R=\langle r, q\rangle\left(p_{i}\right)$ lie in P.

Indeed, since p_{i-1}, p_{i+1} are both in P, we have that $\mathcal{W}_{r}, \mathcal{W}_{q} \notin \mathcal{E}$. It remains to justify that each wall $\mathcal{W}^{\prime} \neq \mathcal{W}_{r}, \mathcal{W}_{q}$ that is the translate of \mathcal{W}_{r} or \mathcal{W}_{q} under an element of $\langle r, q\rangle$ does not belong to \mathcal{E}. We can thus assume that r and q do not commute, since otherwise there is no such \mathcal{W}^{\prime}. Since $\mathcal{W}_{r} \notin \mathcal{E}$, there is a wall \mathcal{U} separating id from \mathcal{W}_{r}. By Lemma 2.2, there is a wall \mathcal{U}^{\prime} separating id from \mathcal{W}^{\prime}, justifying the claim.

We now replace the subpath $\left(p_{i-1}, p_{i}, p_{i+1}\right)$ of π by the second embedded edgepath with vertices in the residue R from p_{i-1} to p_{i+1}. Since all the elements of R
are $\prec p_{i}$ Ron09, Thm 2.9], this decreases the complexity of π defined as the tuple $\left(n_{L}, \ldots, n_{2}, n_{1}\right)$, where n_{j} is the number of p_{i} in π with $\ell\left(p_{i}\right)=j$, with lexicographic order. After possibly removing a subpath, we can assume that the new edge-path is embedded. After finitely many such modifications, we obtain the desired path.

Lemma 2.3. For $g \preceq h$, we have $m(g) \preceq m(h)$.
Proof. Let k be the minimal number of distinct Shi components traversed by a geodesic edge-path γ from h to g. We proceed by induction on k, where for $k=1$ we have $m(g)=m(h)$. Suppose now $k>1$. If a neighbour f of h on γ lies in the same Shi component as h, then we can replace h by f. Thus we can assume that f lies in a different Shi component than h. Consequently, the wall \mathcal{W}_{r} separating h from f belongs to \mathcal{E}. Since $g \preceq f$, by the inductive assumption we have $m(g) \preceq m(f)$. Thus it suffices to prove $m(f) \preceq m(h)$.

In the first case, where for every neighbour h^{\prime} of h on a geodesic edge-path from h to id, the wall separating h from h^{\prime} belongs to \mathcal{E}, we have $h=m(h)$ and we are done. Otherwise, let \mathcal{W}_{q} be such a wall separating h from h^{\prime} outside \mathcal{E}. If r and q do not commute, then r, q are sharp-angled, with id in a geometric fundamental domain for $\langle r, q\rangle$. By Lemma 2.2 , among the walls in $\langle r, q\rangle\left\{\mathcal{W}_{r}, \mathcal{W}_{q}\right\}$ only \mathcal{W}_{r} belongs to \mathcal{E}. Let h, f be the vertices opposite to f, h in the residue $\langle r, q\rangle h$. We have $m(\bar{h})=m(h), m(\bar{f})=m(f)$. Replacing h, f by \bar{h}, \bar{f}, and possibly repeating this procedure finitely many times, we arrive at the first case.

Lemma 2.3 has the following immediate consequence.
Corollary 2.4. For any $g, g^{\prime} \in M$, if the join of g and g^{\prime} exists, then it belongs to M.

For completeness, we include the proof of the following.
Lemma 2.5 ([DH16, Prop 4.16]). For any $h \in M$ and $g \preceq h$, we have $g^{-1} h \in M$.
Proof. For any neighbour h^{\prime} of h on a geodesic edge-path from h to g, the wall \mathcal{W} separating h from h^{\prime} belongs to \mathcal{E}. Consequently, we also have $g^{-1} \mathcal{W} \in \mathcal{E}$, and so $g^{-1} h \in M$.

Also note that for each $s \in S$, we have $\mathcal{W}_{s} \in \mathcal{E}$ and so $m(s)=s$ implying $S \subset M$. Thus Corollary 2.4 and Lemma 2.5 imply Theorem 1.2 .

3. Cone type parts

Let $T=T(g)$ for some $g \in W$. We denote by ∂T the set of walls separating adjacent vertices $h \in T$ and $h^{\prime} \notin T$. In particular, the walls in ∂T separate id from g^{-1}.

We note that one of the primary differences between the cone type parts and the Shi parts is that the cone type parts do not correspond to a 'hyperplane arrangement'. See for example Figure 2.

Figure 2. Shi parts and cone type parts for the Coxeter group of type \widetilde{G}_{2}
Remark 3.1. Note that for $g, g^{\prime} \in Q(T)$ any geodesic edge-path from g to g^{\prime} has all vertices f in $Q(T)$. Indeed, for $h \in T$, any wall separating id from f separates id from g or g^{\prime} and so it does not separate id from h. Thus $h \in T\left(f^{-1}\right)$ and so $T \subseteq T\left(f^{-1}\right)$. Conversely, if we had $T \subsetneq T\left(f^{-1}\right)$ then there would be a vertex $h \in T$ with a neighbour $h^{\prime} \in T\left(f^{-1}\right) \backslash T$ separated from h by a wall \mathcal{W} (in ∂T) that does not separate h from f. The wall \mathcal{W} would not separate h^{\prime} from g or g^{\prime}, contradicting $h^{\prime} \notin T\left(g^{-1}\right)$ or $h^{\prime} \notin T\left(g^{\prime-1}\right)$. See also PY22, Thm 2.14] for a more general statement.

Proof of Theorem [1.3. The proof is identical to that of Theorem 1.1, with P replaced by Q. The vertices of a geodesic edge-path π in X^{1} from p_{0} to p_{n} belong to Q by Remark 3.1. We also make the following change in the proof of the claim that all the elements of $R=\langle r, q\rangle\left(p_{i}\right)$ lie in Q. Namely, since $T=T\left(p_{i}^{-1}\right)$ equals $T\left(p_{i-1}^{-1}\right)$, we have $\mathcal{W}_{r} \notin \partial T$. Analogously we obtain $\mathcal{W}_{q} \notin \partial T$. If r and q do not commute, we have that T is contained in a geometric fundamental domain for $\langle r, q\rangle$, and so we also have $\mathcal{W}^{\prime} \notin \partial T$ for any \mathcal{W}^{\prime} that is a translate of \mathcal{W}_{r} or \mathcal{W}_{q} under an element of $\langle r, q\rangle$. This justifies the claim.

Proof of Theorem 1.4. The proof structure is similar to that of Lemma 2.3. We need to justify that for $g \preceq h$, we have $\mu(g) \preceq \mu(h)$, where we induct on the minimal number k of distinct cone type components traversed by a geodesic edge-path γ from h to g. Suppose $k>1$, and let $Q=Q(T)$ be the cone type component containing h. If a neighbour f of h on γ lies in Q, then we can replace h by f. Thus we can assume $f \notin Q$. Consequently, the wall \mathcal{W}_{r} separating h from f belongs to ∂T. Since $g \preceq f$, by the inductive assumption we have $\mu(g) \preceq \mu(f)$. Thus it suffices to prove $\mu(f) \preceq \mu(h)$.

If for every neighbour h^{\prime} of h on a geodesic edge-path from h to id, the wall separating h from h^{\prime} belongs to ∂T, we have $h=\mu(h)$ and we are done. Otherwise,
let \mathcal{W}_{q} be such a wall separating h from h^{\prime} outside ∂T. Let \bar{h}, \bar{f} be the vertices opposite to f, h in the residue $\langle r, q\rangle h$, and let $f^{\prime}=r q h$. It suffices to prove $\mu(\bar{h})=$ $\mu(h), \mu(\bar{f})=\mu(f)$. To justify $\mu(\bar{h})=\mu(h)$, or, equivalently, $\bar{h} \in Q$, it suffices to observe that among the walls in $\langle r, q\rangle\left\{\mathcal{W}_{r}, \mathcal{W}_{q}\right\}$ only \mathcal{W}_{r} belongs to ∂T : Indeed, if r and q do not commute, then r, q are sharp-angled, with T in the geometric fundamental domain F for $\langle r, q\rangle$ containing id.

It remains to justify $\mu(\bar{f})=\mu(f)$, or, equivalently, $T\left(\bar{f}^{-1}\right)=\widetilde{T}$ for $\widetilde{T}=T\left(f^{-1}\right)$. Since $\widetilde{T} \cap F=T$, to show, for example, $T\left(f^{\prime-1}\right)=\widetilde{T}$, it suffices to show that the wall $\mathcal{W}=r \mathcal{W}_{q}$ does not belong to $\partial \widetilde{T}$.

Otherwise, let $b \in \widetilde{T}$ be adjacent to \mathcal{W}. Then $r b \in F$ is adjacent to \mathcal{W}_{q}, which is outside ∂T. Consequently, $r b \notin T$. Thus there is a wall \mathcal{W}^{\prime} separating id from h and $r b$. Note that $\mathcal{W}^{\prime} \neq \mathcal{W}_{r}$ and so \mathcal{W}^{\prime} separates id from f. Since id lies on a geodesic edge-path from f to b, we have that \mathcal{W}^{\prime} does not separate id from b. Thus $r \mathcal{W}^{\prime}$ separates r and $r b$ from f, h, b, and id, since, again, id lies on a geodesic edge-path from f to b.

Consider the distinct connected components $\Lambda_{1}, \Lambda_{2}, \Lambda_{3}, \Lambda_{4}$ of $X^{1} \backslash\left(\mathcal{W}_{r} \cup r \mathcal{W}^{\prime}\right)$ with id $\in \Lambda_{1}, b \in \Lambda_{2}, r \in \Lambda_{3}, r b \in \Lambda_{4}$. Since id and r are interchanged by the reflection r and they lie in the opposite connected components, we have $r \Lambda_{2} \subsetneq \Lambda_{1}$. On the other hand, since b and $r b$ lie in the opposite connected components, we have $r \Lambda_{1} \subsetneq \Lambda_{2}$, which is a contradiction.

This proves that the wall \mathcal{W} does not belong to $\partial \widetilde{T}$, and hence neither does any other wall in $\langle r, q\rangle\left\{\mathcal{W}_{r}, \mathcal{W}_{q}\right\}$. Consequently $T\left(\bar{f}^{-1}\right)=\widetilde{T}$, as desired.

Figure 3. Proof of Theorem 1.4, the case of $m_{r q}=3$

References

[BH93] Brigitte Brink and Robert B. Howlett, A finiteness property and an automatic structure for Coxeter groups., Mathematische Annalen 296 (1993), no. 1, 179-190.
[DDH15] Patrick Dehornoy, Matthew Dyer, and Christophe Hohlweg, Garside families in Artin-Tits monoids and low elements in Coxeter groups, Comptes Rendus Mathematique 353 (2015), no. 5, 403-408.
[Dye19] Matthew Dyer, On the Weak Order of Coxeter Groups, Canadian Journal of Mathematics 71 (2019), no. 2, 299-336.
[DH16] Matthew Dyer and Christophe Hohlweg, Small roots, low elements, and the weak order in Coxeter groups, Adv. Math. 301 (2016), 739-784.
[DFHM23] Matthew Dyer, Susanna Fishel, Christophe Hohlweg, and Alice Mark, Shi arrangements and low elements on Coxeter groups (2023), available at arXiv:2303.16569.
[Fis20] Susanna Fishel, A survey of the Shi arrangement (2020), available at arXiv:1909. 01257.
[HNW16] Christophe Hohlweg, Philippe Nadeau, and Nathan Williams, Automata, reduced words, and Garside shadows in Coxeter groups, Journal of Algebra 457 (2016), 431456.
[OP22] Damian Osajda and Piotr Przytycki, Coxeter groups are biautomatic (2022), available at arXiv:2206.07804.
[PY22] James Parkinson and Yeeka Yau, Cone types, automata, and regular partitions in Coxeter groups, Adv. Math. 398 (2022), Paper No. 108146, 66pp.
[Ron09] Mark Ronan, Lectures on buildings, University of Chicago Press, Chicago, IL, 2009. Updated and revised.
[Shi87] Jian Yi Shi, Alcoves corresponding to an affine Weyl group, J. London Math. Soc. (2) 35 (1987), no. 1, 42-55.

Department of Mathematics and Statistics, McGill University, Burnside Hall, 805 Sherbrooke Street West, Montreal, QC, H3A 0B9, Canada

Email address: piotr.przytycki@mcgill.ca
Department of Mathematics and Statistics, 1 University Heights, University of North Carolina Asheville, Asheville, NC 28804, USA

Email address: yyau@unca.edu

[^0]: \dagger Partially supported by NSERC and (Polish) Narodowe Centrum Nauki, UMO2018/30/M/ST1/00668.
 \dagger Partially supported by the National Science Foundation under Award No. 2316995.

